Advertisement

Science China Chemistry

, Volume 62, Issue 4, pp 451–459 | Cite as

Rational design of a visible-light photochromic diarylethene: a simple strategy by extending conjugation with electron donating groups

  • Shanliang Tang
  • Fengling SongEmail author
  • Meiheng Lu
  • Keli Han
  • Xiaojun Peng
Articles
  • 61 Downloads

Abstract

Photochromic diarylethenes have been widely used in many fields. However, their cyclization process must be induced by UV light. In this article, a simple strategy is developed by extending π-conjugation with electron donating groups. The modified dirylethene derivative can photocyclolize under 405-nm light with a good photochromic efficiency. Meanwhile, its absorption and moderate fluorescence can be switched effectively in both directions by visible lights (405 and 520 nm, respectively) in different solutions and in living cells. We believe that this simple method will become a versatile strategy for developing various dirylethylenes with visible-light photochromism.

Keywords

diarylethylenes visible-light photochromism photoreaction quantum yield fluorescence photoswitching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21877011, 21576038, 21421005), the Fundamental Research Funds for the Central Universities of China (DUT16TD21), Science Program of Dalian City (2014J11JH133, 2015J12JH207) and the Supercomputing Center of Dalian University of Technology.

Supplementary material

11426_2018_9381_MOESM1_ESM.docx (3.9 mb)
A Visible-Light Photochromic Diarylethene: A Simple Strategy by Extending Conjugation with Electron Donating Groups

References

  1. 1.
    Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Nature, 2002, 420: 759–760CrossRefGoogle Scholar
  2. 2.
    Kobatake S, Takami S, Muto H, Ishikawa T, Irie M. Nature, 2007, 446: 778–781CrossRefGoogle Scholar
  3. 3.
    Andreasson J, Pischel U, Straight SD, Moore TA, Moore AL, Gust D. J Am Chem Soc, 2011, 133: 11641–11648CrossRefGoogle Scholar
  4. 4.
    Díaz SA, Giordano L, Azcárate JC, Jovin TM, Jares-Erijman EA. J Am Chem Soc, 2013, 135: 3208–3217CrossRefGoogle Scholar
  5. 5.
    Fukaminato T. J Photochem Photobiol C-Photochem Rev, 2011, 12: 177–208CrossRefGoogle Scholar
  6. 6.
    Heilemann M, Dedecker P, Hofkens J, Sauer M. Laser Photon Rev, 2009, 3: 180–202CrossRefGoogle Scholar
  7. 7.
    Raymo FM. Phys Chem Chem Phys, 2013, 15: 14840–14850CrossRefGoogle Scholar
  8. 8.
    Fürstenberg A, Heilemann M. Phys Chem Chem Phys, 2013, 15: 14919–14930CrossRefGoogle Scholar
  9. 9.
    Kwon J, Hwang J, Park J, Han GR, Han KY, Kim SK. Sci Rep, 2016, 5: 17804CrossRefGoogle Scholar
  10. 10.
    Wang S, Wang F, Li C, Li T, Cao D, Ma X. Sci China Chem, 2018, 61: 1301–1306CrossRefGoogle Scholar
  11. 11.
    Orgiu E, Crivillers N, Herder M, Grubert L, Pätzel M, Frisch J, Pavlica E, Duong DT, Bratina G, Salleo A, Koch N, Hecht S, Samorì P. Nat Chem, 2012, 4: 675–679CrossRefGoogle Scholar
  12. 12.
    Gemayel ME, Börjesson K, Herder M, Duong DT, Hutchison JA, Ruzié C, Schweicher G, Salleo A, Geerts Y, Hecht S, Orgiu E, Samorì P. Nat Commun, 2015, 6: 6330CrossRefGoogle Scholar
  13. 13.
    Pang SC, Hyun H, Lee S, Jang D, Lee MJ, Kang SH, Ahn KH. Chem Commun, 2012, 48: 3745CrossRefGoogle Scholar
  14. 14.
    Bléger D, Hecht S. Angew Chem Int Ed, 2015, 54: 11338–11349CrossRefGoogle Scholar
  15. 15.
    Jukes RTF, Adamo V, Hartl F, Belser P, De Cola L. Inorg Chem, 2004, 43: 2779–2792CrossRefGoogle Scholar
  16. 16.
    Yam VWW, Ko CC, Zhu N. J Am Chem Soc, 2004, 126: 12734–12735CrossRefGoogle Scholar
  17. 17.
    Tan W, Zhang Q, Zhang J, Tian H. Org Lett, 2009, 11: 161–164CrossRefGoogle Scholar
  18. 18.
    Fredrich S, Göstl R, Herder M, Grubert L, Hecht S. Angew Chem Int Ed, 2016, 55: 1208–1212CrossRefGoogle Scholar
  19. 19.
    Zhang Z, Zhang J, Wu B, Li X, Chen Y, Huang J, Zhu L, Tian H. Adv Opt Mater, 2018, 6: 1700847CrossRefGoogle Scholar
  20. 20.
    Carling CJ, Boyer JC, Branda NR. J Am Chem Soc, 2009, 131: 10838–10839CrossRefGoogle Scholar
  21. 21.
    Boyer JC, Carling CJ, Gates BD, Branda NR. J Am Chem Soc, 2010, 132: 15766–15772CrossRefGoogle Scholar
  22. 22.
    Zheng K, Han S, Zeng X, Wu Y, Song S, Zhang H, Liu X. Adv Mater, 2018, 30: 1801726CrossRefGoogle Scholar
  23. 23.
    Mori K, Ishibashi Y, Matsuda H, Ito S, Nagasawa Y, Nakagawa H, Uchida K, Yokojima S, Nakamura S, Irie M, Miyasaka H. J Am Chem Soc, 2011, 133: 2621–2625CrossRefGoogle Scholar
  24. 24.
    Tsivgoulis GM, Lehn JM. Adv Mater, 1997, 9: 627–630CrossRefGoogle Scholar
  25. 25.
    Thomas Bens A, Frewert D, Kodatis K, Kryschi C, Martin HD, Trommsdorff HP. Eur J Org Chem, 1998, 1998: 2333–2338CrossRefGoogle Scholar
  26. 26.
    Osuka A, Fujikane D, Shinmori H, Kobatake S, Irie M. J Org Chem, 2001, 66: 3913–3923CrossRefGoogle Scholar
  27. 27.
    Fukaminato T, Hirose T, Doi T, Hazama M, Matsuda K, Irie M. J Am Chem Soc, 2014, 136: 17145–17154CrossRefGoogle Scholar
  28. 28.
    Chen S, Chen LJ, Yang HB, Tian H, Zhu W. J Am Chem Soc, 2012, 134: 13596–13599CrossRefGoogle Scholar
  29. 29.
    Chen S, Guo Z, Zhu S, Shi W, Zhu W. ACS Appl Mater Interfaces, 2013, 5: 5623–5629CrossRefGoogle Scholar
  30. 30.
    Wu Y, Chen S, Yang Y, Zhang Q, Xie Y, Tian H, Zhu W. Chem Commun, 2012, 48: 528–530CrossRefGoogle Scholar
  31. 31.
    Wu Y, Xie Y, Zhang Q, Tian H, Zhu W, Li ADQ. Angew Chem Int Ed, 2014, 53: 2090–2094CrossRefGoogle Scholar
  32. 32.
    Jeong YC, Gao C, Lee IS, Yang SI, Ahn KH. Tetrahedron Lett, 2009, 50: 5288–5290CrossRefGoogle Scholar
  33. 33.
    Jeong YC, Yang SI, Kim E, Ahn KH. Tetrahedron, 2006, 62: 5855–5861CrossRefGoogle Scholar
  34. 34.
    Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U. Nat Protoc, 2013, 8: 1535–1550CrossRefGoogle Scholar
  35. 35.
    Velapoldi RA, Tønnesen HH. J Fluoresc, 2004, 14: 465–472CrossRefGoogle Scholar
  36. 36.
    Zhu W, Yang Y, Métivier R, Zhang Q, Guillot R, Xie Y, Tian H, Nakatani K. Angew Chem Int Ed, 2011, 50: 10986–10990CrossRefGoogle Scholar
  37. 37.
    Li W, Jiao C, Li X, Xie Y, Nakatani K, Tian H, Zhu W. Angew Chem Int Ed, 2014, 53: 4603–4607CrossRefGoogle Scholar
  38. 38.
    Wu NMW, Ng M, Lam WH, Wong HL, Yam VWW. J Am Chem Soc, 2017, 139: 15142–15150CrossRefGoogle Scholar
  39. 39.
    Hatchard CG, Parker CA. Proc R Soc A-Math Phys Eng Sci, 1956, 235: 518–536Google Scholar
  40. 40.
    Montalti M, Credi A, Prodi L, Gandolfi M T. Handbook of Photochemistry. Chapter 12, Chemical Actionmetry. Boca Raton: CRC Press, 2006. 601–616Google Scholar
  41. 41.
    Cui X, Zhao J, Zhou Y, Ma J, Zhao Y. J Am Chem Soc, 2014, 136: 9256–9259CrossRefGoogle Scholar
  42. 42.
    Chen S, Li W, Li X, Zhu WH. J Mater Chem C, 2017, 5: 2717–2722CrossRefGoogle Scholar
  43. 43.
    Hu F, Cao M, Ma X, Liu SH, Yin J. J Org Chem, 2015, 80: 7830–7835CrossRefGoogle Scholar
  44. 44.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams D-Young, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A, Jr., Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Wallingford CT: Gaussian, Inc., 2016Google Scholar
  45. 45.
    Matsuda K, Irie M. J Am Chem Soc, 2000, 122: 7195–7201CrossRefGoogle Scholar
  46. 46.
    Boggio-Pasqua M, Ravaglia M, Bearpark MJ, Garavelli M, Robb MA. J Phys Chem A, 2003, 107: 11139–11152CrossRefGoogle Scholar
  47. 47.
    Ishibashi Y, Umesato T, Kobatake S, Irie M, Miyasaka H. J Phys Chem C, 2012, 116: 4862–4869CrossRefGoogle Scholar
  48. 48.
    Gillanders F, Giordano L, Díaz SA, Jovin TM, Jares-Erijman EA. Photochem Photobiol Sci, 2014, 13: 603CrossRefGoogle Scholar
  49. 49.
    Sumi T, Takagi Y, Yagi A, Morimoto M, Irie M. Chem Commun, 2014, 50: 3928–3930CrossRefGoogle Scholar
  50. 50.
    Peng J, Zhao J, Ye K, Gao H, Sun J, Lu R. Chem Asian J, 2018, 13: 1719–1724CrossRefGoogle Scholar
  51. 51.
    Xu J, Volfova H, Mulder RJ, Goerigk L, Bryant G, Riedle E, Ritchie C. J Am Chem Soc, 2018, 140: 10482–10487CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shanliang Tang
    • 1
  • Fengling Song
    • 1
    Email author
  • Meiheng Lu
    • 2
  • Keli Han
    • 2
  • Xiaojun Peng
    • 1
  1. 1.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianChina
  2. 2.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations