Advertisement

A new asymmetric anthracene derivative with high mobility

  • Xixia Yu
  • Lei Zheng
  • Jinfeng Li
  • Lu Wang
  • Jiangli Han
  • Huayi ChenEmail author
  • Xiaotao ZhangEmail author
  • Wenping HuEmail author
Articles
  • 10 Downloads

Abstract

An asymmetric anthracene derivative (4-HDPA) was designed and synthesized. With the optimization of proper scenario of fabrication process, top-contact thin film devices based on 4-HDPA exhibit mobility as high as 3.59 cm2 V–1 s–1, while its single-crystal devices exhibit mobility as high as 5.12 cm2 V–1 s–1, which is higher than the symmetrical counterpart of 4-HDPA in both single-crystal and thin film devices.

Keywords

organic field-effect transistor (OFET) asymmetric anthracene derivative mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program (2017YFA0204503, 2016YFB0401100), the National Natural Science Foundation of China (51703159, 51633006, 51733004), and the Strategic Priority Research Program (XDB12030300) of the Chinese Academy of Science.

References

  1. 1.
    Di C, Zhang F, Zhu D. Adv Mater, 2013, 25: 313–330CrossRefGoogle Scholar
  2. 2.
    Dong H, Wang C, Hu W. Chem Commun, 2010, 46: 5211–5222CrossRefGoogle Scholar
  3. 3.
    Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem Rev, 2012, 112: 2208–2267CrossRefGoogle Scholar
  4. 4.
    Tang Q, Tong Y, Hu W, Wan Q, Bjørnholm T. Adv Mater, 2009, 21: 4234–4237CrossRefGoogle Scholar
  5. 5.
    Clark J, Lanzani G. Nat Photon, 2010, 4: 438–446CrossRefGoogle Scholar
  6. 6.
    Minemawari H, Yamada T, Matsui H, Tsutsumi J, Haas S, Chiba R, Kumai R, Hasegawa T. Nature, 2011, 475: 364–367CrossRefGoogle Scholar
  7. 7.
    Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB, Chen J, Nordlund D, Toney MF, Huang J, Bao Z. Nat Commun, 2014, 5: 3005CrossRefGoogle Scholar
  8. 8.
    Jiang H, Hu P, Ye J, Li Y, Li H, Zhang X, Li R, Dong H, Hu W, Kloc C. Adv Mater, 2017, 29: 1605053CrossRefGoogle Scholar
  9. 9.
    Jurchescu O, Popinciuc M, van Wees B, Palstra T. Adv Mater, 2007, 19: 688–692CrossRefGoogle Scholar
  10. 10.
    Li H, Tee BCK, Cha JJ, Cui Y, Chung JW, Lee SY, Bao Z. J Am Chem Soc, 2012, 134: 2760–2765CrossRefGoogle Scholar
  11. 11.
    Watanabe M, Chang YJ, Liu SW, Chao TH, Goto K, Islam MM, Yuan CH, Tao YT, Shinmyozu T, Chow TJ. Nat Chem, 2012, 4: 574–578CrossRefGoogle Scholar
  12. 12.
    Brédas JL, Beljonne D, Coropceanu V, Conrnil J. Chem Rev, 2004, 104: 4971–5003CrossRefGoogle Scholar
  13. 13.
    Yue W, Lv A, Gao J, Jiang W, Hao L, Li C, Li Y, Polander LE, Barlow S, Hu W, Di Motta S, Negri F, Marder SR, Wang Z. J Am Chem Soc, 2012, 134: 5770–5773CrossRefGoogle Scholar
  14. 14.
    Roberson LB, Kowalik J, Tolbert LM, Kloc C, Zeis R, Chi X, Fleming R, Wilkins C. J Am Chem Soc, 2005, 127: 3069–3075CrossRefGoogle Scholar
  15. 15.
    Klauk H, Zschieschang U, Weitz R, Meng H, Sun F, Nunes G, Keys D, Fincher C, Xiang Z. Adv Mater, 2007, 19: 3882–3887CrossRefGoogle Scholar
  16. 16.
    Dadvand A, Moiseev AG, Sawabe K, Sun WH, Djukic B, Chung I, Takenobu T, Rosei F, Perepichka DF. Angew Chem Int Ed, 2012, 51: 3837–3841CrossRefGoogle Scholar
  17. 17.
    Zhang X, Zhao G, Zhen Y, Tu Z, He P, Yi Y, Dong H, Hu W. J Mater Chem C, 2015, 3: 5368–5371CrossRefGoogle Scholar
  18. 18.
    Liu J, Dong H, Wang Z, Ji D, Cheng C, Geng H, Zhang H, Zhen Y, Jiang L, Fu H, Bo Z, Chen W, Shuai Z, Hu W. Chem Commun, 2015, 51: 11777–11779CrossRefGoogle Scholar
  19. 19.
    Liu J, Zhang H, Dong H, Meng L, Jiang L, Jiang L, Wang Y, Yu J, Sun Y, Hu W, Heeger AJ. Nat Commun, 2015, 6: 10032CrossRefGoogle Scholar
  20. 20.
    Xu C, He P, Liu J, Cui A, Dong H, Zhen Y, Chen W, Hu W. Angew Chem Int Ed, 2016, 55: 9519–9523CrossRefGoogle Scholar
  21. 21.
    Tang ML, Roberts ME, Locklin JJ, Ling MM, Meng H, Bao Z. Chem Mater, 2006, 18: 6250–6257CrossRefGoogle Scholar
  22. 22.
    Tian H, Han Y, Bao C, Yan D, Geng Y, Wang F. Chem Commun, 2012, 48: 3557–3559CrossRefGoogle Scholar
  23. 23.
    Škalamera Ð, Veljkovic J, Pticek L, Sambol M, Mlinaric-Majerski K, Basaric N. Tetrahedron, 2017, 73: 5892–5899CrossRefGoogle Scholar
  24. 24.
    Hodge P, Power GA, Rabjohns MA. Chem Commun, 1997, 0: 73–74CrossRefGoogle Scholar
  25. 25.
    Li J, Zhou K, Liu J, Zhen Y, Liu L, Zhang J, Dong H, Zhang X, Jiang L, Hu W. J Am Chem Soc, 2017, 139: 17261–17264CrossRefGoogle Scholar
  26. 26.
    Rao MR, Desmecht A, Perepichka DF. Chem Eur J, 2015, 21: 6193–6201CrossRefGoogle Scholar
  27. 27.
    Zapf A, Ehrentraut A, Beller M. Angew Chem, 2000, 112: 4315–4317CrossRefGoogle Scholar
  28. 28.
    Liu L, Zhang Y, Wang Y. J Org Chem, 2005, 70: 6122–6125CrossRefGoogle Scholar
  29. 29.
    Shao W, Dong H, Jiang L, Hu W. Chem Sci, 2011, 2: 590–600CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of ChemistryTianjin UniversityTianjinChina
  2. 2.ShenMa Engineering Plastics Co. Ltd.PingdingshanChina

Personalised recommendations