Advertisement

High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries

  • Yunping Wen
  • Yao Liu
  • Duan Bin
  • Zhuo Wang
  • Congxiao Wang
  • Yuliang Cao
  • Xinping Ai
  • Yongyao Xia
Articles
  • 1 Downloads

Abstract

This work developed a facile way to mass-produce a carbon-coated TiP2O7 nanoporous microsphere (TPO-NMS) as anode material for aqueous lithium-ion batteries via solid-phase synthesis combined with spray drying method. TiP2O7 shows great prospect as anode for aqueous rechargeable lithium-ion batteries (ALIBs) in view of its appropriate intercalation potential of −0.6 V (vs. SCE) before hydrogen evolution in aqueous electrolytes. The resulting sample presents the morphology of secondary microspheres (ca. 20 μm) aggregated by carbon-coated primary nanoparticles (100 nm), in which the primary nanoparticles with uniform carbon coating and sophisticated pore structure greatly improve its electrochemical performance. Consequently, TPONMS delivers a reversible capacity of 90 mA h/g at 0.1 A/g, and displays enhanced rate performance and good cycling stability with capacity retention of 90% after 500 cycles at 0.2 A/g. A full cell containing TPO-NMS anode and LiMn2O4 cathode delivers a specific energy density of 63 W h/kg calculated on the total mass of anode and cathode. It also shows good rate capacity with 56% capacity maintained at 10 A/g rate (vs. 0.1 A/g), as well as long cycle life with the capacity retention of 82% after 1000 cycles at 0.5 A/g.

Keywords

aqueous lithium-ion batteries H2 evolution reaction anode TiP2O7 spray drying 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21333002), and the National Key Research and Development Plan (2016YFB0901500).

References

  1. 1.
    Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K. Chem Rev, 2014, 114: 11788–11827CrossRefGoogle Scholar
  2. 2.
    Chang Z, Yang Y, Li M, Wang X, Wu Y. J Mater Chem A, 2014, 2: 10739–10755CrossRefGoogle Scholar
  3. 3.
    Alias N, Mohamad AA. J Power Sources, 2015, 274: 237–251CrossRefGoogle Scholar
  4. 4.
    Li W, Dahn JR, Wainwright DS. Science, 1994, 264: 1115–1118CrossRefGoogle Scholar
  5. 5.
    Köhler J, Makihara H, Uegaito H, Inoue H, Toki M. Electrochim Acta, 2000, 46: 59–65CrossRefGoogle Scholar
  6. 6.
    Wang H, Zeng Y, Huang K, Liu S, Chen L. Electrochim Acta, 2007, 52: 5102–5107CrossRefGoogle Scholar
  7. 7.
    Wang H, Huang K, Zeng Y, Yang S, Chen L. Electrochim Acta, 2007, 52: 3280–3285CrossRefGoogle Scholar
  8. 8.
    Wang G, Qu Q, Wang B, Shi Y, Tian S, Wu Y. ChemPhysChem, 2008, 9: 2299–2301CrossRefGoogle Scholar
  9. 9.
    Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK. J Power Sources, 1998, 74: 198–201CrossRefGoogle Scholar
  10. 10.
    Wang Y, Chen L, Wang Y, Xia Y. Electrochim Acta, 2015, 173: 178–183CrossRefGoogle Scholar
  11. 11.
    Wang Y, Luo J, Wang C, Xia Y. J Electrochem Soc, 2006, 153: A1425CrossRefGoogle Scholar
  12. 12.
    Wang G, Fu L, Zhao N, Yang L, Wu Y, Wu H. Angew Chem Int Ed, 2007, 46: 295–297CrossRefGoogle Scholar
  13. 13.
    Manickam M, Singh P, Thurgate S, Prince K. J Power Sources, 2006, 158: 646–649CrossRefGoogle Scholar
  14. 14.
    He P, Liu JL, Cui WJ, Luo JY, Xia YY. Electrochim Acta, 2011, 56: 2351–2357CrossRefGoogle Scholar
  15. 15.
    Wang Y, Yi J, Xia Y. Adv Energy Mater, 2012, 2: 830–840CrossRefGoogle Scholar
  16. 16.
    Luo JY, Cui WJ, He P, Xia YY. Nat Chem, 2010, 2: 760–765CrossRefGoogle Scholar
  17. 17.
    Luo JY, Xia YY. Adv Funct Mater, 2007, 17: 3877–3884CrossRefGoogle Scholar
  18. 18.
    Li W. J Electrochem Soc, 1995, 142: 1742–1746CrossRefGoogle Scholar
  19. 19.
    Wessells C, Huggins RA, Cui Y. J Power Sources, 2011, 196: 2884–2888CrossRefGoogle Scholar
  20. 20.
    Wen Y, Chen L, Pang Y, Guo Z, Bin D, Wang Y, Wang C, Xia Y. ACS Appl Mater Interfaces, 2017, 9: 8075–8082CrossRefGoogle Scholar
  21. 21.
    Patoux S, Masquelier C. Chem Mater, 2002, 14: 5057–5068CrossRefGoogle Scholar
  22. 22.
    Hao Y, Wu C, Cui Y, Xu K, Yuan Z, Zhuang Q. Ionics, 2014, 20: 1079–1085CrossRefGoogle Scholar
  23. 23.
    Senguttuvan P, Rousse G, Oró-Solé J, Tarascon JM, Palacín MR. J Mater Chem A, 2013, 1: 15284–15289CrossRefGoogle Scholar
  24. 24.
    Li C, Sun X, Du Q, Zhang H. Solid State Ion, 2013, 249-250: 72–77CrossRefGoogle Scholar
  25. 25.
    Wu W, Shanbhag S, Wise A, Chang J, Rutt A, Whitacre JF. J Electrochem Soc, 2015, 162: A1921–A1926CrossRefGoogle Scholar
  26. 26.
    Zhang H, Zhou Y, Li C, Yang C, Zhu T. J Mater Chem A, 2016, 4: 13390–13394CrossRefGoogle Scholar
  27. 27.
    Norberg ST, Svensson G, Albertsson J. Acta Crystlogr C Cryst Struct Commun, 2001, 57: 225–227CrossRefGoogle Scholar
  28. 28.
    Sanz J, Iglesias JE, Soria J, Losilla ER, Aranda MAG, Bruque S. Chem Mater, 1997, 9: 996–1003CrossRefGoogle Scholar
  29. 29.
    Hu S, Song Y, Yuan S, Liu H, Xu Q, Wang Y, Wang CX, Xia YY. J Power Sources, 2016, 303: 333–339CrossRefGoogle Scholar
  30. 30.
    Liu J, Conry TE, Song X, Doeff MM, Richardson TJ. Energy Environ Sci, 2011, 4: 885–888CrossRefGoogle Scholar
  31. 31.
    Rai AK, Gim J, Song J, Mathew V, Anh LT, Kim J. Electrochim Acta, 2012, 75: 247–253CrossRefGoogle Scholar
  32. 32.
    Shi Z, Wang Q, Ye W, Li Y, Yang Y. Microporous Mesoporous Mater, 2006, 88: 232–237CrossRefGoogle Scholar
  33. 33.
    Sun Y, Gai L, Zhou Y, Zuo X, Zhou J, Jiang H. CrystEngComm, 2014, 16: 10681–10691CrossRefGoogle Scholar
  34. 34.
    Dobbelaere T, Mattelaer F, Roy AK, Vereecken P, Detavernier C. J Mater Chem A, 2017, 5: 330–338CrossRefGoogle Scholar
  35. 35.
    Aravindan V, Reddy MV, Madhavi S, Mhaisalkar SG, Subba Rao GV, Chowdari BVR. J Power Sources, 2011, 196: 8850–8854CrossRefGoogle Scholar
  36. 36.
    Rai AK, Lim J, Mathew V, Gim J, Kang J, Paul BJ, Kim D, Ahn S, Kim S, Ahn K, Kim J. Electrochem Commun, 2012, 19: 9–12CrossRefGoogle Scholar
  37. 37.
    Teng D, Yu Y, Li P, Bai X, Yang X. RSC Adv, 2013, 3: 14237–14240CrossRefGoogle Scholar
  38. 38.
    Sun K, Juarez DA, Huang H, Jung E, Dillon SJ. J Power Sources, 2014, 248: 582–587CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yunping Wen
    • 1
  • Yao Liu
    • 1
  • Duan Bin
    • 1
  • Zhuo Wang
    • 1
  • Congxiao Wang
    • 1
  • Yuliang Cao
    • 2
  • Xinping Ai
    • 2
  • Yongyao Xia
    • 1
  1. 1.Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New EnergyFudan UniversityShanghaiChina
  2. 2.Hubei Key Laboratory Electrochem Power Sources, College of Chemistry and Molecular ScienceWuhan UniversityWuhanChina

Personalised recommendations