Facile construction of two-dimensional coordination polymers with a well-designed redox-active organic linker for improved lithium ion battery performance

  • Jingwei Liu
  • Lin Zhang
  • Huanhuan Li
  • Peng Zhao
  • Peng Ren
  • Wei ShiEmail author
  • Peng ChengEmail author
Articles SPECIAL ISSUE: Dedicated to the 100th Anniversary of Nankai University


A well-designed redox-active organic linker, pyrazine-2,3,5,6-tetracarboxylate (H4pztc) with brimming active sites for lithium ions storage was utilized to construct coordination polymers (CPs) via a facile hydrothermal reaction. Those two isostructural two-dimensional (2D) CPs, namely [M2(pztc)(H2O)6]n (M=Co for 1 and Ni for 2), delivered excellent reversible capacities and stable cycling performance as anodes in lithium ion batteries. As demonstrated in electrochemical studies, 1 and 2 can achieve highly reversible capacities of 815 and 536 mA h g−1 at 200 mA g−1 for 150 cycles, respectively, best performed for the reported 2D-CP-based anode materials. The electrochemical mechanism studies showed that the remarkable performances can be ascribed to the synergistic Li-storage redox reactions of metal centers and organic moieties. Our work highlights the opportunities of using a well-designed organic ligand to construct low-dimensional CPs as new type of electrode materials for advanced lithium ion batteries.


two-dimensional coordination polymers anode materials lithium ion battery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21622105, 21501071, 21421001), Shenzhen Fundamental Research Project (JCYJ20160525164227350), the Ministry of Education of China (B12015), and the Natural Science Foundation of Tianjin (18JCJQJC47200).

Supplementary material

11426_2018_9370_MOESM1_ESM.pdf (6.2 mb)
Facile construction of two-dimensional coordination polymers with a well-designed redox-active organic linker for improved lithium ion battery performance
11426_2018_9370_MOESM2_ESM.pdf (160 kb)
checkCIF/PLATON report
11426_2018_9370_MOESM3_ESM.pdf (154 kb)
Supplementary material, approximately 153 KB.


  1. 1.
    Melot BC, Tarascon JM. Acc Chem Res, 2013, 46: 1226–1238CrossRefGoogle Scholar
  2. 2.
    Tarascon JM, Armand M. Nature, 2001, 414: 359–367CrossRefGoogle Scholar
  3. 3.
    Meng J, Guo H, Niu C, Zhao Y, Xu L, Li Q, Mai L. Joule, 2017, 1: 522–547CrossRefGoogle Scholar
  4. 4.
    Liu Y, Zhou G, Liu K, Cui Y. Acc Chem Res, 2017, 50: 2895–2905CrossRefGoogle Scholar
  5. 5.
    Assat G, Tarascon JM. Nat Energy, 2018, 3: 373–386CrossRefGoogle Scholar
  6. 6.
    Muraliganth T, Vadivel Murugan A, Manthiram A. Chem Commun, 2009, 9: 7360–7362CrossRefGoogle Scholar
  7. 7.
    Li X, Zheng S, Jin L, Li Y, Geng P, Xue H, Pang H, Xu Q. Adv Energy Mater, 2018, 8: 1800716CrossRefGoogle Scholar
  8. 8.
    Gao M, Liu X, Yang H, Yu Y. Sci China Chem, 2018, 61: 1151–1158CrossRefGoogle Scholar
  9. 9.
    Chen B, Xiang S, Qian G. Acc Chem Res, 2010, 43: 1115–1124CrossRefGoogle Scholar
  10. 10.
    Zhou HC, Long JR, Yaghi OM. Chem Rev, 2012, 112: 673–674CrossRefGoogle Scholar
  11. 11.
    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444CrossRefGoogle Scholar
  12. 12.
    Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B. Coord Chem Rev, 2016, 307: 361–381CrossRefGoogle Scholar
  13. 13.
    Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Xue H, Pang H. Adv Energy Mater, 2017, 7: 1602733CrossRefGoogle Scholar
  14. 14.
    Li X, Cheng F, Zhang S, Chen J. J Power Sources, 2006, 160: 542–547CrossRefGoogle Scholar
  15. 15.
    Liu Q, Yu L, Wang Y, Ji Y, Horvat J, Cheng ML, Jia X, Wang G. Inorg Chem, 2013, 52: 2817–2822CrossRefGoogle Scholar
  16. 16.
    Saravanan K, Nagarathinam M, Balaya P, Vittal JJ. J Mater Chem, 2010, 20: 8329–8335CrossRefGoogle Scholar
  17. 17.
    Shen L, Song H, Wang C. Electrochim Acta, 2017, 235: 595–603CrossRefGoogle Scholar
  18. 18.
    Li G, Yang H, Li F, Cheng F, Shi W, Chen J, Cheng P. Inorg Chem, 2016, 55: 4935–4940CrossRefGoogle Scholar
  19. 19.
    Lin Y, Zhang Q, Zhao C, Li H, Kong C, Shen C, Chen L. Chem Commun, 2015, 51: 697–699CrossRefGoogle Scholar
  20. 20.
    Wolff L, Dtsch Ber. Chem Ges, 1887, 20: 425–433CrossRefGoogle Scholar
  21. 21.
    Liang Z, Qu C, Guo W, Zou R, Xu Q. Adv Mater, 2018, 30: 1702891CrossRefGoogle Scholar
  22. 22.
    Cong L, Xie H, Li J. Adv Energy Mater, 2017, 7: 1601906CrossRefGoogle Scholar
  23. 23.
    Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu JB, Zhu H. Appl Phys Rev, 2017, 4: 021306CrossRefGoogle Scholar
  24. 24.
    Shi L, Zhao T. J Mater Chem A, 2017, 5: 3735–3758CrossRefGoogle Scholar
  25. 25.
    An T, Wang Y, Tang J, Wang Y, Zhang L, Zheng G. J Colloid Interface Sci, 2015, 445: 320–325CrossRefGoogle Scholar
  26. 26.
    Han X, Yi F, Sun T, Sun J. Electrochem Commun, 2012, 25: 136–139CrossRefGoogle Scholar
  27. 27.
    Li C, Hu X, Tong W, Yan W, Lou X, Shen M, Hu B. ACS Appl Mater Interfaces, 2017, 9: 29829–29838CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Niu YB, Liu T, Li YT, Wang MQ, Hou J, Xu M. Mater Lett, 2015, 161: 712–715CrossRefGoogle Scholar
  29. 29.
    Sheldrick GM. SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures. Germany: University of Göttingen, 1997Google Scholar
  30. 30.
    Sheldrick GM. Acta Crystlogr A Found Crystlogr, 2008, 64: 112–122CrossRefGoogle Scholar
  31. 31.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. J Appl Crystlogr, 2009, 42: 339–341CrossRefGoogle Scholar
  32. 32.
    Alfonso M, Neels A, Stoeckli-Evans H. Acta Crystlogr C Cryst Struct Commun, 2001, 57: 1144–1146CrossRefGoogle Scholar
  33. 33.
    Peng C, Ning GH, Su J, Zhong G, Tang W, Tian B, Su C, Yu D, Zu L, Yang J, Ng MF, Hu YS, Yang Y, Armand M, Loh KP. Nat Energy, 2017, 2: 17074CrossRefGoogle Scholar
  34. 34.
    Lou X, Ning Y, Li C, Shen M, Hu B, Hu X, Hu B. Inorg Chem, 2018, 57: 3126–3132CrossRefGoogle Scholar
  35. 35.
    Wang H, Yuan S, Si Z, Zhang X. Energy Environ Sci, 2015, 8: 3160–3165CrossRefGoogle Scholar
  36. 36.
    Deng Q, Fan C, Wang L, Cao B, Jin Y, Che CM, Li J. Electrochim Acta, 2016, 222: 1086–1093CrossRefGoogle Scholar
  37. 37.
    Senthil Kumar R, Nithya C, Gopukumar S, Anbu Kulandainathan M. Energy Tech, 2014, 2: 921–927CrossRefGoogle Scholar
  38. 38.
    Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. ACS Nano, 2014, 8: 1728–1738CrossRefGoogle Scholar
  39. 39.
    Torardi CC, Miao CR. Chem Mater, 2002, 14: 4430–4433CrossRefGoogle Scholar
  40. 40.
    Gao S, Chen Z, Wei M, Wei K, Zhou H. Electrochim Acta, 2009, 54: 1115–1118CrossRefGoogle Scholar
  41. 41.
    Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D. Angew Chem, 2013, 125: 6545–6548CrossRefGoogle Scholar
  42. 42.
    Maiti S, Pramanik A, Manju U, Mahanty S. ACS Appl Mater Interfaces, 2016, 7: 16357–16363CrossRefGoogle Scholar
  43. 43.
    Song H, Shen L, Wang J, Wang C. J Mater Chem A, 2016, 4: 15411–15419CrossRefGoogle Scholar
  44. 44.
    Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie: Perkin-Elmer Corporation, 1979Google Scholar
  45. 45.
    Beamson G, Briggs D. High Resolution XPS of Organic Polymers: the Scienta ESCA300 Database. Chichester: Wiley, 1992Google Scholar
  46. 46.
    Marco JF, Gancedo JR, Gracia M, Gautier JL, Ríos E, Berry FJ. J Solid State Chem, 2000, 153: 74–81CrossRefGoogle Scholar
  47. 47.
    Song Y, Yu L, Gao Y, Shi C, Cheng M, Wang X, Liu HJ, Liu Q. Inorg Chem, 2017, 56: 11603–11609CrossRefGoogle Scholar
  48. 48.
    Bai L, Gao Q, Zhao Y. J Mater Chem A, 2017, 4: 14106–14110CrossRefGoogle Scholar
  49. 49.
    Huang Q, Wei T, Zhang M, Dong LZ, Zhang AM, Li SL, Liu WJ, Liu J, Lan YQ. J Mater Chem A, 2017, 5: 8477–8483CrossRefGoogle Scholar
  50. 50.
    Zhang L, Cheng F, Shi W, Chen J, Cheng P. ACS Appl Mater Interfaces, 2018, 10: 6398–6406CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of ChemistryNankai UniversityTianjinChina
  2. 2.School of ScienceHarbin Institute of Technology (Shenzhen)ShenzhenChina
  3. 3.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjinChina

Personalised recommendations