Optimizing luminescence sensitivity and moisture stability of porous coordination frameworks by varying ligand side groups

  • Jia-Wen Ye
  • Xu-Yu Li
  • Hao-Long Zhou
  • Jie-Peng Zhang


Hydrophobic ethyl, butyl or hexyl groups were introduced into the dicarboxylate ligand in the fluorescent porous coordination framework [Zn2(fda)2(bpy)] (LMOF-202, H2fda=9H-fluorene-2,7-dicarboxylic acid, bpy=4,4′-bipyridine) for improving water stability and tuning oxygen sensitivity. The long hexyl groups gave satisfactory water stability but its oxygen sensitivity is low (70.8% fluorescence quenched at 1 bar O2 (1 bar=105 Pa)). In contrast, the shorter side groups gave high oxygen sensitivity (93.9% fluorescence quenched at 1 bar O2) and low water stability. The derivation of the Stern-Volmer curves of the O2 luminescence quenching data from the linear form can be used for detecting trace impurities in the luminescent framework, being much more sensitive than conventional methods such as powder X-ray diffraction. Mixing the ethyl and hexyl groups in the solid-solution manner brought high oxygen sensitivity (96.4% fluorescence quenched at 1 bar O2) and high water stability simultaneously in the same coordination framework.


metal-organic framework water stability oxygen fluorescence sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (91622109, 21731007, 21821003), and Guangdong Pearl River Talents Program (2017BT01C161).

Supplementary material

11426_2018_9369_MOESM1_ESM.pdf (382 kb)
Electronic supplementary information for


  1. 1.
    Lu Z, Zhang J, He H, Du L, Hang C. Inorg Chem Front, 2017, 4: 736–740CrossRefGoogle Scholar
  2. 2.
    Luo J, Wang J, Cao Y, Yao S, Zhang L, Huo Q, Liu Y. Inorg Chem Front, 2017, 4: 139–143CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Feng X, Yuan S, Zhou J, Wang B. Inorg Chem Front, 2016, 3: 896–909CrossRefGoogle Scholar
  4. 4.
    Wang Q, Xiong S, Xiang Z, Peng S, Wang X, Cao D. Sci China Chem, 2016, 59: 643–650CrossRefGoogle Scholar
  5. 5.
    Liu D, Wang X, Chen YP, Yuan S, Zhong C, Zhou HC. Sci China Chem, 2016, 59: 975–979CrossRefGoogle Scholar
  6. 6.
    Tan B, Wu ZF, Xie ZL. Sci Bull, 2017, 62: 1132–1141CrossRefGoogle Scholar
  7. 7.
    Fu D, Xu Y, Zhao M, Chang Z, Bu X. Sci Bull, 2016, 61: 1255–1259CrossRefGoogle Scholar
  8. 8.
    Xia T, Wang J, Jiang K, Cui Y, Yang Y, Qian G. Chin Chem Lett, 2018, 29: 861–864CrossRefGoogle Scholar
  9. 9.
    Wen T, Zhou XP, Zhang DX, Li D. Chem Eur J, 2014, 20: 644–648CrossRefGoogle Scholar
  10. 10.
    Yi FY, Chen D, Wu MK, Han L, Jiang HL. ChemPlusChem, 2016, 81: 675–690CrossRefGoogle Scholar
  11. 11.
    Wang T, Liu QH, Gao Y, Yang XY, Yang W, Dang S, Sun ZM. Chin Chem Lett, 2016, 27: 497–501CrossRefGoogle Scholar
  12. 12.
    Samanta P, Desai AV, Sharma S, Chandra P, Ghosh SK. Inorg Chem, 2018, 57: 2360–2364CrossRefGoogle Scholar
  13. 13.
    Chen MM, Chen L, Li HX, Brammer L, Lang JP. Inorg Chem Front, 2016, 3: 1297–1305CrossRefGoogle Scholar
  14. 14.
    Xie W, Qin JS, He WW, Shao KZ, Su ZM, Du DY, Li SL, Lan YQ. Inorg Chem Front, 2017, 4: 547–552CrossRefGoogle Scholar
  15. 15.
    Cheng T, Hu J, Zhou C, Wang Y, Zhang M. Sci China Chem, 2016, 59: 929–947CrossRefGoogle Scholar
  16. 16.
    Wang T, Jia Y, Chen Q, Feng R, Tian S, Hu TL, Bu XH. Sci China Chem, 2016, 59: 959–964CrossRefGoogle Scholar
  17. 17.
    Wang X, Wolfbeis OS. Chem Soc Rev, 2014, 43: 3666–3761CrossRefGoogle Scholar
  18. 18.
    Zhang G, Palmer GM, Dewhirst MW, Fraser CL. Nat Mater, 2009, 8: 747–751CrossRefGoogle Scholar
  19. 19.
    Klein C, Engler RH, Henne U, Sachs WE. Exp Fluids, 2005, 39: 475–483CrossRefGoogle Scholar
  20. 20.
    Liu SY, Qi XL, Lin RB, Cheng XN, Liao PQ, Zhang JP, Chen XM. Adv Funct Mater, 2014, 24: 5866–5872CrossRefGoogle Scholar
  21. 21.
    An J, Shade CM, Chengelis-Czegan DA, Petoud S, Rosi NL. J Am Chem Soc, 2011, 133: 1220–1223CrossRefGoogle Scholar
  22. 22.
    Dou Z, Yu J, Cui Y, Yang Y, Wang Z, Yang D, Qian G. J Am Chem Soc, 2014, 136: 5527–5530CrossRefGoogle Scholar
  23. 23.
    Xie Z, Ma L, de Krafft KE, Jin A, Lin W. J Am Chem Soc, 2010, 132: 922–923CrossRefGoogle Scholar
  24. 24.
    Xu R, Wang Y, Duan X, Lu K, Micheroni D, Hu A, Lin W. J Am Chem Soc, 2016, 138: 2158–2161CrossRefGoogle Scholar
  25. 25.
    Jing T, Chen L, Jiang F, Yang Y, Zhou K, Yu M, Cao Z, Li S, Hong M. Cryst Growth Des, 2018, 18: 2956–2963CrossRefGoogle Scholar
  26. 26.
    Du X, Li H, Liu H, Li G, Li L, Zang S. Chinese J Appl Chem, 2017, 34: 1024–1034 (in Chinese)Google Scholar
  27. 27.
    Lin RB, Li F, Liu SY, Qi XL, Zhang JP, Chen XM. Angew Chem Int Ed, 2013, 52: 13429–13433CrossRefGoogle Scholar
  28. 28.
    Lin RB, Zhou HL, He CT, Zhang JP, Chen XM. Inorg Chem Front, 2015, 2: 1085–1090CrossRefGoogle Scholar
  29. 29.
    Yu M, Ou C, Liu B, Lin D, Liu Y, Xue W, Lin Z, Lin J, Qian Y, Wang S, Cao H, Bian L, Xie L, Huang W. Chin J Polym Sci, 2016, 35: 155–170CrossRefGoogle Scholar
  30. 30.
    Hu Z, Tan K, Lustig WP, Wang H, Zhao Y, Zheng C, Banerjee D, Emge TJ, Chabal YJ, Li J. Chem Sci, 2014, 5: 4873–4877CrossRefGoogle Scholar
  31. 31.
    Li A, Li L, Lin Z, Song L, Wang ZH, Chen Q, Yang T, Zhou XH, Xiao HP, Yin XJ. New J Chem, 2015, 39: 2289–2295CrossRefGoogle Scholar
  32. 32.
    Ye JW, Lin JM, Mo ZW, He CT, Zhou HL, Zhang JP, Chen XM. Inorg Chem, 2017, 56: 4238–4243CrossRefGoogle Scholar
  33. 33.
    Liu SY, Zhou DD, He CT, Liao PQ, Cheng XN, Xu YT, Ye JW, Zhang JP, Chen XM. Angew Chem Int Ed, 2016, 55: 16021–16025CrossRefGoogle Scholar
  34. 34.
    Douvali A, Tsipis AC, Eliseeva SV, Petoud S, Papaefstathiou GS, Malliakas CD, Papadas I, Armatas GS, Margiolaki I, Kanatzidis MG, Lazarides T, Manos MJ. Angew Chem Int Ed, 2015, 54: 1651–1656CrossRefGoogle Scholar
  35. 35.
    Ye JW, Zhou HL, Liu SY, Cheng XN, Lin RB, Qi XL, Zhang JP, Chen XM. Chem Mater, 2015, 27: 8255–8260CrossRefGoogle Scholar
  36. 36.
    Wang C, Liu X, Keser Demir N, Chen JP, Li K. Chem Soc Rev, 2016, 45: 5107–5134CrossRefGoogle Scholar
  37. 37.
    Burtch NC, Jasuja H, Walton KS. Chem Rev, 2014, 114: 10575–10612CrossRefGoogle Scholar
  38. 38.
    Yang J, Grzech A, Mulder FM, Dingemans TJ. Chem Commun, 2011, 47: 5244–5246CrossRefGoogle Scholar
  39. 39.
    Zhao XH, Zhao YY, Zha MQ, Li X. Z für Naturforschung B, 2013, 68: 1015–1020CrossRefGoogle Scholar
  40. 40.
    Belfield KD, Bondar MV, Yanez CO, Hernandez FE, Przhonska OV. J Mater Chem, 2009, 19: 7498CrossRefGoogle Scholar
  41. 41.
    Zhou HL, Bai J, Ye JW, Mo ZW, Zhang WX, Zhang JP, Chen XM. ChemPlusChem, 2016, 81: 817–821CrossRefGoogle Scholar
  42. 42.
    Demas JN, DeGraff BA, Xu W. Anal Chem, 1995, 67: 1377–1380CrossRefGoogle Scholar
  43. 43.
    Yang J, Grzech A, Mulder FM, Dingemans TJ. Eur J Inorg Chem, 2013, 2013(13): 2336–2341CrossRefGoogle Scholar
  44. 44.
    Deria P, Mondloch JE, Karagiaridi O, Bury W, Hupp JT, Farha OK. Chem Soc Rev, 2014, 43: 5896–5912CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jia-Wen Ye
    • 1
  • Xu-Yu Li
    • 1
  • Hao-Long Zhou
    • 1
  • Jie-Peng Zhang
    • 1
  1. 1.MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of ChemistrySun Yat-Sen UniversityGuangzhouChina

Personalised recommendations