Science China Chemistry

, Volume 62, Issue 1, pp 58–61 | Cite as

Intercalated kaolinite as an emerging platform for cancer therapy

  • Yi ZhangEmail author
  • Peng Huang
  • Mei Long
  • Song Liu
  • Huaming YangEmail author
  • Shuwen YuanEmail author
  • Shi ChangEmail author


An innovative cancer therapy strategy regarding the interface engineering of kaolinite has been designed. The exposed silanol group facilitates more guest species with high dispersion on the supports. Mn3O4 magnetic nanoparticles are uniformly distributed on external surfaces of the KaolinC12N with the Al–O–Mn bond for the detection of the tumor microenvironment by T1-MRI; Doxorubicin (DOX) are loaded in the interlayer space with the electrostatic interaction for chemo-treating; and KI is coated on the outer layer of the nanocomposites based on the electrostatic interaction for thyroid cancer targeting. The synergetic effects and the treatment mechanism enhanced by the interface engineering, KI@DOX-Mn3O4-KaolinC12N can cause remarkably low cell viability (57%, 200 μg/mL), tumor shrinking (75%, 20 μg/kg), and accumulation into the tumor tissues. The novel kaolinite based drug delivery system is expected to incorporate imaging diagnosis, targeted therapy and drug delivery into one single system for postoperative residual thyroid cancer treatment and observation for metastasis of focal area.


kaolinite pillared drug delivery system thyroid cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21878341, 51804343, 41572036, 51225403), the Strategic Priority Research Program of Central South University (ZLXD2017005), the Natural Science Foundation of Hunan Province (2018JJ3670), the Key R&D Program of Hunan Province (2017GK2251), and Hunan Provincial Science and Technology Project (2016RS2004, 2015TP1006).

Supplementary material

11426_2018_9364_MOESM1_ESM.pdf (702 kb)
Intercalated kaolinite as an emerging platform for cancer therapy
11426_2018_9364_MOESM2_ESM.gif (5.9 mb)
Supplementary material, approximately 6.1 MB.
11426_2018_9364_MOESM3_ESM.gif (3.3 mb)
Supplementary material, approximately 3.4 MB.
11426_2018_9364_MOESM4_ESM.gif (3.2 mb)
Supplementary material, approximately 3.3 MB.


  1. 1.
    Dawson JI, Oreffo ROC. Adv Mater, 2013, 25: 4069–4086CrossRefGoogle Scholar
  2. 2.
    Chimene D, Alge DL, Gaharwar AK. Adv Mater, 2015, 27: 7261–7284CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Long M, Huang P, Yang H, Chang S, Hu Y, Tang A, Mao L. Nano Res, 2017, 10: 2633–2643CrossRefGoogle Scholar
  4. 4.
    Lvov Y, Wang W, Zhang L, Fakhrullin R. Adv Mater, 2016, 28: 1227–1250CrossRefGoogle Scholar
  5. 5.
    González RI, Rogan J, Bringa EM, Valdivia JA. J Phys Chem C, 2016, 120: 14428–14434CrossRefGoogle Scholar
  6. 6.
    Hu P, Yang H. Appl Clay Sci, 2013, 74: 58–65CrossRefGoogle Scholar
  7. 7.
    Schaef HT, Glezakou VA, Owen AT, Ramprasad S, Martin PF, McGrail BP. Environ Sci Technol Lett, 2014, 1: 142–145CrossRefGoogle Scholar
  8. 8.
    Underwood T, Erastova V, Greenwell HC. J Phys Chem C, 2016, 120: 11433–11449CrossRefGoogle Scholar
  9. 9.
    Alstadt VJ, Kubicki JD, Freedman MA. J Phys Chem A, 2016, 120: 8339–8346CrossRefGoogle Scholar
  10. 10.
    Hou XJ, Li H, Li S, He P. J Phys Chem C, 2014, 118: 26017–26026CrossRefGoogle Scholar
  11. 11.
    Zen A, Roch LM, Cox SJ, Hu XL, Sorella S, Alfè D, Michaelides A. J Phys Chem C, 2016, 120: 26402–26413CrossRefGoogle Scholar
  12. 12.
    Long M, Zhang Y, Shu Z, Tang A, Ouyang J, Yang H. Chem Commun, 2017, 53: 6255–6258CrossRefGoogle Scholar
  13. 13.
    Tacar O, Sriamornsak P, Dass CR. J Pharm Pharmacol, 2013, 65: 157–170CrossRefGoogle Scholar
  14. 14.
    Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H. J Clin Invest, 2014, 124: 617–630CrossRefGoogle Scholar
  15. 15.
    Tessonnier JP, Ersen O, Weinberg G, Pham-Huu C, Su DS, Schlögl R. ACS Nano, 2009, 3: 2081–2089CrossRefGoogle Scholar
  16. 16.
    Kim BM, Qian S, Bau HH. Nano Lett, 2005, 5: 873–878CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Tan J, Long M, Yang H, Yuan S, Tang A, Chang S, Hu Y. J Mater Chem B, 2016, 4: 7406–7414CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Long M, Huang P, Yang H, Chang S, Hu Y, Tang A, Mao L. Sci Rep, 2016, 6: 33335CrossRefGoogle Scholar
  19. 19.
    Chen Y, Yin Q, Ji X, Zhang S, Chen H, Zheng Y, Sun Y, Qu H, Wang Z, Li Y, Wang X, Zhang K, Zhang L, Shi J. Biomaterials, 2012, 33: 7126–7137CrossRefGoogle Scholar
  20. 20.
    Nafiujjaman M, Nurunnabi M, Kang S, Reeck GR, Khan HA, Lee Y. J Mater Chem B, 2015, 3: 5815–5823CrossRefGoogle Scholar
  21. 21.
    Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Angew Chem Int Ed, 2014, 48: 12320–12364Google Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Inorganic Materials, School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.Hunan Key Laboratory of Mineral Materials and ApplicationCentral South UniversityChangshaChina
  3. 3.Xiangya HospitalCentral South UniversityChangshaChina
  4. 4.Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
  5. 5.Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations