Science China Chemistry

, Volume 62, Issue 1, pp 80–86 | Cite as

Synthesis of 4H-chromenes by silver (I)-catalyzed cycloaddition of ortho-quinone methides with N-allenamides

  • Long Kong
  • Nuligonda Thirupathi
  • Jiong JiaEmail author
  • Zhenghu XuEmail author


Chromenes represent an important class of six-membered heterocycles and have drawn tremendous attention in recent years. In this article, we report a convenient and practical synthesis of this heterocycle by a silver (I)-catalyzed cycloaddition reaction between in situ generated ortho-quinone methides and N-allenamides. Diverse 4H-chromenes were synthesized in good to excellent yields under very mild conditions.


4H-chromene ortho-quinone methide N-allenamide silver-catalysis cycloaddition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21572118, 21750110444), the Natural Science Foundation of Shandong Province (ZR2018MB010), subject construction funds ( and Tang scholar award of Shandong University.

Supplementary material

11426_2018_9359_MOESM1_ESM.pdf (601 kb)
Supplementary material, approximately 601 KB.
11426_2018_9359_MOESM2_ESM.pdf (3.9 mb)
Synthesis of 4H-chromenes by silver(I)-catalyzed cycloaddition of ortho-quinone methides with N-allenamides


  1. 1.
    Jiang ZZ, Gao A, Li H, Chen D, Ding CH, Xu B, Hou XL. Chem Asian J, 2017, 12: 3119–3122CrossRefGoogle Scholar
  2. 2.
    Graham TJA, Doyle AG. Org Lett, 2012, 14: 1616–1619CrossRefGoogle Scholar
  3. 3.
    Shestopalov AM, Litvinov YM, Rodinovskaya LA, Malyshev OR, Semenova MN, Semenov VV. ACS Comb Sci, 2012, 14: 484–490CrossRefGoogle Scholar
  4. 4.
    Ren Q, Siau WY, Du Z, Zhang K, Wang J. Chem Eur J, 2011, 17: 7781–7785CrossRefGoogle Scholar
  5. 5.
    Malakar CC, Schmidt D, Conrad J, Beifuss U. Org Lett, 2011, 13: 1972–1975CrossRefGoogle Scholar
  6. 6.
    Hufford CD, Oguntimein BO, Baker JK. J Org Chem, 1981, 46: 3073–3078CrossRefGoogle Scholar
  7. 7.
    Chansakaow S, Ishikawa T, Seki H, Sekine K, Okada M, Chaichantipyuth C. J Nat Prod, 2000, 63: 173–175CrossRefGoogle Scholar
  8. 8.
    Das SG, Doshi JM, Tian D, Addo SN, Srinivasan B, Hermanson DL, Xing C. J Med Chem, 2009, 52: 5937–5949CrossRefGoogle Scholar
  9. 9.
    Li M, Zhang B, Gu Y. Green Chem, 2012, 14: 2421–2428CrossRefGoogle Scholar
  10. 10.
    Liu Y, Qian J, Lou S, Zhu J, Xu Z. J Org Chem, 2010, 75: 1309–1312CrossRefGoogle Scholar
  11. 11.
    Singh SN, Bopanni R, Jayaprakash S, Reddy KV, Ashfaq MA, Kumar KS, Pal M. RSC Adv, 2014, 4: 24870–24873CrossRefGoogle Scholar
  12. 12.
    Bai WJ, David JG, Feng ZG, Weaver MG, Wu KL, Pettus TRR. Acc Chem Res, 2014, 47: 3655–3664CrossRefGoogle Scholar
  13. 13.
    van de Water RW, Pettus TRR. Tetrahedron, 2002, 58: 5367–5405CrossRefGoogle Scholar
  14. 14.
    Alden-Danforth E, Scerba MT, Lectka T. Org Lett, 2008, 10: 4951–4953CrossRefGoogle Scholar
  15. 15.
    Hsiao CC, Liao HH, Rueping M. Angew Chem Int Ed, 2014, 53: 13258–13263CrossRefGoogle Scholar
  16. 16.
    Pathak TP, Sigman MS. J Org Chem, 2011, 76: 9210–9215CrossRefGoogle Scholar
  17. 17.
    Caruana L, Fochi M, Bernardi L. Molecules, 2015, 20: 11733–11764CrossRefGoogle Scholar
  18. 18.
    Wang Z, Sun J. Synthesis, 2015, 47: 3629–3644CrossRefGoogle Scholar
  19. 19.
    Ai W, Liao D, Lei X. Chin J Org Chem, 2015, 35: 1615–1626CrossRefGoogle Scholar
  20. 20.
    Jana R, Pathak TP, Jensen KH, Sigman MS. Org Lett, 2012, 14: 4074–4077CrossRefGoogle Scholar
  21. 21.
    Izquierdo J, Orue A, Scheidt KA. J Am Chem Soc, 2013, 135: 10634–10637CrossRefGoogle Scholar
  22. 22.
    Lv H, Jia WQ, Sun LH, Ye S. Angew Chem Int Ed, 2013, 52: 8607–8610CrossRefGoogle Scholar
  23. 23.
    Huang Y, Hayashi T. J Am Chem Soc, 2015, 137: 7556–7559CrossRefGoogle Scholar
  24. 24.
    Zhao W, Wang Z, Chu B, Sun J. Angew Chem Int Ed, 2015, 54: 1910–1913CrossRefGoogle Scholar
  25. 25.
    Saha S, Schneider C. Org Lett, 2015, 17: 648–651CrossRefGoogle Scholar
  26. 26.
    Tsui GC, Liu L, List B. Angew Chem Int Ed, 2015, 54: 7703–7706CrossRefGoogle Scholar
  27. 27.
    Zhao JJ, Sun SB, He SH, Wu Q, Shi F. Angew Chem Int Ed, 2015, 54: 5460–5464CrossRefGoogle Scholar
  28. 28.
    Guo W, Wu B, Zhou X, Chen P, Wang X, Zhou YG, Liu Y, Li C. Angew Chem Int Ed, 2015, 54: 4522–4526CrossRefGoogle Scholar
  29. 29.
    Wang Z, Ai F, Wang Z, Zhao W, Zhu G, Lin Z, Sun J. J Am Chem Soc, 2015, 137: 383–389CrossRefGoogle Scholar
  30. 30.
    Yu XY, Chen JR, Wei Q, Cheng HG, Liu ZC, Xiao WJ. Chem Eur J, 2016, 22: 6774–6778CrossRefGoogle Scholar
  31. 31.
    Osipov DV, Osyanin VA, Khaysanova GD, Masterova ER, Krasnikov PE, Klimochkin YN. J Org Chem, 2018, 83: 4775–4785CrossRefGoogle Scholar
  32. 32.
    El-Sepelgy O, Haseloff S, Alamsetti SK, Schneider C. Angew Chem Int Ed, 2014, 53: 7923–7927CrossRefGoogle Scholar
  33. 33.
    Hsiao CC, Raja S, Liao HH, Atodiresei I, Rueping M. Angew Chem Int Ed, 2015, 54: 5762–5765CrossRefGoogle Scholar
  34. 34.
    Xie Y, List B. Angew Chem Int Ed, 2017, 56: 4936–4940CrossRefGoogle Scholar
  35. 35.
    Wang Z, Sun J. Org Lett, 2016, 19: 2334–2337CrossRefGoogle Scholar
  36. 36.
    Lukashenko AV, Osyanin VA, Osipov DV, Klimochkin YN. J Org Chem, 2017, 82: 1517–1528CrossRefGoogle Scholar
  37. 37.
    Thirupathi N, Tung CH, Xu Z. Adv Synth Catal, 2018, 360: 3585–3589CrossRefGoogle Scholar
  38. 38.
    Faustino H, López F, Castedo L, Mascareñas JL. Chem Sci, 2011, 2: 633–637CrossRefGoogle Scholar
  39. 39.
    Wang Y, Zhang P, Qian D, Zhang J. Angew Chem Int Ed, 2015, 54: 14849–14852CrossRefGoogle Scholar
  40. 40.
    Li XX, Zhu LL, Zhou W, Chen Z. Org Lett, 2012, 14: 436–439CrossRefGoogle Scholar
  41. 41.
    Wang Y, Zhang P, Liu Y, Xia F, Zhang J. Chem Sci, 2015, 6: 5564–5570CrossRefGoogle Scholar
  42. 42.
    Peng S, Cao S, Sun J. Org Lett, 2017, 19: 524–527CrossRefGoogle Scholar
  43. 43.
    Varela I, Faustino H, Díez E, Iglesias-Sigüenza J, Grande-Carmona F, Fernández R, Lassaletta JM, Mascareñas JL, López F. ACS Catal, 2017, 7: 2397–2402CrossRefGoogle Scholar
  44. 44.
    Lu T, Lu Z, Ma ZX, Zhang Y, Hsung RP. Chem Rev, 2013, 113: 4862–4904CrossRefGoogle Scholar
  45. 45.
    Wei LL, Xiong H, Hsung RP. Acc Chem Res, 2003, 36: 773–782CrossRefGoogle Scholar
  46. 46.
    Suárez-Pantiga S, Hernández-Díaz C, Rubio E, González JM. Angew Chem Int Ed, 2012, 51: 11552–11555CrossRefGoogle Scholar
  47. 47.
    Suárez-Pantiga S, Hernández-Díaz C, Piedrafita M, Rubio E, González JM. Adv Synth Catal, 2012, 354: 1651–1657CrossRefGoogle Scholar
  48. 48.
    Sabbatani J, Huang X, Veiros LF, Maulide N. Chem Eur J, 2014, 20: 10636–10639CrossRefGoogle Scholar
  49. 49.
    Liang M, Zhang S, Jia J, Tung CH, Wang J, Xu Z. Org Lett, 2017, 19: 2526–2529CrossRefGoogle Scholar
  50. 50.
    Du JY, Ma YH, Meng FX, Chen BL, Zhang SL, Li QL, Gong SW, Wang DQ, Ma CL. Org Lett, 2018, 20: 4371–4374CrossRefGoogle Scholar
  51. 51.
    Zhang S, Shan C, Zhang S, Yuan L, Wang J, Tung CH, Xing LB, Xu Z. Org Biomol Chem, 2016, 14: 10973–10980CrossRefGoogle Scholar
  52. 52.
    Wang X, Yao Z, Dong S, Wei F, Wang H, Xu Z. Org Lett, 2013, 15: 2234–2237CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Department of ChemistryShandong UniversityJinanChina
  2. 2.State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina

Personalised recommendations