Science China Chemistry

, Volume 62, Issue 1, pp 126–132 | Cite as

On-surface stereoconvergent synthesis, dimerization and hybridization of organocopper complexes

  • Chi Zhang
  • Qiang Sun
  • Huihui Kong
  • Chunxue YuanEmail author
  • Wei XuEmail author


Despite the vital role of stereoconvergent synthesis in modern chemistry, the on-surface stereoconvergent synthesis of organometallic complexes involving transformation among several stereoisomers to one specific form has been few reported. By combination of high-resolution scanning tunneling microscopy (STM) imaging/manipulation and density functional theory (DFT) calculations, we have displayed the stereoconvergent synthesis of organocopper complexes via the Cu-alkene interaction and further dimerization into H-shaped motifs, in which two cis-forms and one trans-form are involved, and the specific adsorption configuration of one cis-form is revealed to be the key for such a synthesis. Furthermore, the generality of the dimerization of organocopper complexes has also been verified by codeposition of two similar molecular precursors, and the hybridized K-shaped motifs (made up of two kinds of organocopper complexes) have been successfully achieved. These findings may provide atomic-scale insights into the synthesis of specific stereoisomers in the fields of pharmaceuticals, biochemistry and organometallic chemistry.


scanning tunneling microscopy density functional theory surface chemistry organometallic complex stereoconvergent synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21473123, 21622307, 21790351), and the Fundamental Research Funds for the Central Universities. Prof. Aiguo Hu and Dr. Zhiwen Li are acknowledged for providing the molecules.

Supplementary material

11426_2018_9355_MOESM1_ESM.pdf (3 mb)
On-surface stereoconvergent synthesis, dimerization and hybridization of organocopper complexes


  1. 1.
    Bhat V, Welin ER, Guo X, Stoltz BM. Chem Rev, 2017, 117: 4528–4561CrossRefGoogle Scholar
  2. 2.
    Park JK, Lackey HH, Ondrusek BA, McQuade DT. J Am Chem Soc, 2011, 133: 2410–2413CrossRefGoogle Scholar
  3. 3.
    Ito H, Kunii S, Sawamura M. Nat Chem, 2010, 2: 972–976CrossRefGoogle Scholar
  4. 4.
    Keylor MH, Matsuura BS, Griesser M, Chauvin JPR, Harding RA, Kirillova MS, Zhu X, Fischer OJ, Pratt DA, Stephenson CRJ. Science, 2016, 354: 1260–1265CrossRefGoogle Scholar
  5. 5.
    Lundin PM, Fu GC. J Am Chem Soc, 2010, 132: 11027–11029CrossRefGoogle Scholar
  6. 6.
    Guzman-Martinez A, Hoveyda AH. J Am Chem Soc, 2010, 132: 10634–10637CrossRefGoogle Scholar
  7. 7.
    Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H. J Am Chem Soc, 2010, 132: 11440–11442CrossRefGoogle Scholar
  8. 8.
    Alemani M, Peters MV, Hecht S, Rieder KH, Moresco F, Grill L. J Am Chem Soc, 2006, 128: 14446–14447CrossRefGoogle Scholar
  9. 9.
    Henzl J, Mehlhorn M, Gawronski H, Rieder KH, Morgenstern K. Angew Chem Int Ed, 2006, 45: 603–606CrossRefGoogle Scholar
  10. 10.
    Bazarnik M, Henzl J, Czajka R, Morgenstern K. Chem Commun, 2011, 47: 7764–7766CrossRefGoogle Scholar
  11. 11.
    Kazuma E, Han M, Jung J, Oh J, Seki T, Kim Y. J Phys Chem Lett, 2015, 6: 4239–4243CrossRefGoogle Scholar
  12. 12.
    Pechenezhskiy IV, Cho J, Nguyen GD, Berbil-Bautista L, Giles BL, Poulsen DA, Fréchet JMJ, Crommie MF. J Phys Chem C, 2012, 116: 1052–1055CrossRefGoogle Scholar
  13. 13.
    Xu LP, Wan LJ. J Phys Chem B, 2006, 110: 3185–3188CrossRefGoogle Scholar
  14. 14.
    Sun Q, Zhang C, Wang L, Li Z, Hu A, Tan Q, Xu W. Chem Commun, 2014, 50: 1728–1730CrossRefGoogle Scholar
  15. 15.
    Liao L, Li Y, Zhang X, Geng Y, Zhang J, Xie J, Zeng Q, Wang C. J Phys Chem C, 2014, 118: 15963–15969CrossRefGoogle Scholar
  16. 16.
    Tsai CS, Wang JK, Skodje RT, Lin JC. J Am Chem Soc, 2005, 127: 10788–10789CrossRefGoogle Scholar
  17. 17.
    Sun Q, Cai L, Ma H, Yuan C, Xu W. Chem Commun, 2016, 52: 6009–6012CrossRefGoogle Scholar
  18. 18.
    Sun Q, Cai L, Ding Y, Xie L, Zhang C, Tan Q, Xu W. Angew Chem Int Ed, 2015, 54: 4549–4552CrossRefGoogle Scholar
  19. 19.
    Zhang C, Sun Q, Kong H, Wang L, Tan Q, Xu W. Chem Commun, 2014, 50: 15924–15927CrossRefGoogle Scholar
  20. 20.
    Besenbacher F. Rep Prog Phys, 1996, 59: 1737–1802CrossRefGoogle Scholar
  21. 21.
    Laegsgaard E, Österlund L, Thostrup P, Rasmussen PB, Stensgaard I, Besenbacher F. Rev Sci Instrum, 2001, 72: 3537–3542CrossRefGoogle Scholar
  22. 22.
    Xu W, Kong H, Zhang C, Sun Q, Gersen H, Dong L, Tan Q, Laegsgaard E, Besenbacher F. Angew Chem Int Ed, 2013, 52: 7442–7445CrossRefGoogle Scholar
  23. 23.
    Yu M, Xu W, Benjalal Y, Barattin R, Lægsgaard E, Stensgaard I, Hliwa M, Bouju X, Gourdon A, Joachim C, Linderoth TR, Besenbacher F. Nano Res, 2009, 2: 254–259CrossRefGoogle Scholar
  24. 24.
    Kresse G, Hafner J. Phys Rev B, 1993, 48: 13115–13118CrossRefGoogle Scholar
  25. 25.
    Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186CrossRefGoogle Scholar
  26. 26.
    Blöchl PE. Phys Rev B, 1994, 50: 17953–17979CrossRefGoogle Scholar
  27. 27.
    Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  29. 29.
    Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104CrossRefGoogle Scholar
  30. 30.
    Tersoff J, Hamann DR. Phys Rev B, 1985, 31: 805–813CrossRefGoogle Scholar
  31. 31.
    Vanpoucke DEP, Brocks G. Phys Rev B, 2008, 77: 241308CrossRefGoogle Scholar
  32. 32.
    Lee J, C.~Sorescu D, Lee JG, Dougherty D. Surf Sci, 2016, 652: 82–90CrossRefGoogle Scholar
  33. 33.
    Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W. J Am Chem Soc, 2013, 135: 8448–8451CrossRefGoogle Scholar
  34. 34.
    Sun Q, Zhang C, Li Z, Sheng K, Kong H, Wang L, Pan Y, Tan Q, Hu A, Xu W. Appl Phys Lett, 2013, 103: 013103CrossRefGoogle Scholar
  35. 35.
    Crabtree RH. The Organometallic Chemistry of the Transition Metals. New Jersey: Wiley, 2005. 125–158CrossRefGoogle Scholar
  36. 36.
    Love RA, Koetzle TF, Williams GJB, Andrews LC, Bau R. Inorg Chem, 1975, 14: 2653–2657CrossRefGoogle Scholar
  37. 37.
    Weigelt S, Busse C, Petersen L, Rauls E, Hammer B, Gothelf KV, Besenbacher F, Linderoth TR. Nat Mater, 2006, 5: 112–117CrossRefGoogle Scholar
  38. 38.
    Sánchez-Sánchez C, Nicolaï A, Rossel F, Cai J, Liu J, Feng X, Müllen K, Ruffieux P, Fasel R, Meunier V. J Am Chem Soc, 2017, 139: 17617–17623CrossRefGoogle Scholar
  39. 39.
    Ammon M, Sander T, Maier S. J Am Chem Soc, 2017, 139: 12976–12984CrossRefGoogle Scholar
  40. 40.
    Weber PB, Hellwig R, Paintner T, Lattelais M, Paszkiewicz M, Casado Aguilar P, Deimel PS, Guo Y, Zhang YQ, Allegretti F, Papageorgiou AC, Reichert J, Klyatskaya S, Ruben M, Barth JV, Bocquet ML, Klappenberger F. Angew Chem Int Ed, 2016, 55: 5754–5759CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interdisciplinary Materials Research Center, College of Materials Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations