Science China Chemistry

, Volume 62, Issue 1, pp 105–117 | Cite as

pH-Sensitive assembly/disassembly gold nanoparticles with the potential of tumor diagnosis and treatment

  • Jinlong Ma
  • Xiaomin Li
  • Zhenpeng Hu
  • Xinyu Wang
  • Yapei Zhang
  • Wei Wang
  • Qiang Wu
  • Zhi YuanEmail author


Due to the ability to combine the separately unique characteristics of assembled and disassembled nanoparticles (NPs), the stimuli-responsive self-assembly of NPs has attracted considerable interest in functional material applications especially biomaterials. Here we demonstrate a facile and versatile approach to regulate the self-assembly process and transition pH of Au NPs by fine-tuning the co-modified pH-responsive compounds and poly(ethylene glycol) (PEG). Importantly the transition pH (ΔpH=0.4) of the system can be predetermined in the range of 8.2–5.8 (assembled to disassembled) and 8.2–4.2 (disassembled to assembled), which ideally covers the pH of normal tissue, tumor tissue milieu and organelles. The results of fluorescence imaging, Raman spectroscopy and photothermal conversion of the stimuli-responsive Au NPs shows the potential application for tumor specificity theranostics. In a nutshell this study provides a useful toolkit to design tumor-activatable self-assembled NPs with high specificity and universality.


pH-sensitive assemble disassemble gold nanoparticles transition pH 



This work was supported by the National Natural Science Foundation of China (51433004, 51773096), and the Natural Science Foundation of Tianjin (17JCZDJC33500) and PCSIRT (IRT1257).

Supplementary material

11426_2018_9354_MOESM1_ESM.docx (4 mb)
pH-Sensitive Assembly/Disassembly Gold Nanoparticles with the Potential of Tumor Diagnosis and Treatment


  1. 1.
    Ye H, Yang K, Tao J, Liu Y, Zhang Q, Habibi S, Nie Z, Xia X. ACS Nano, 2017, 11: 2052–2059CrossRefGoogle Scholar
  2. 2.
    Chou LYT, Song F, Chan WCW. J Am Chem Soc, 2016, 138: 4565–4572CrossRefGoogle Scholar
  3. 3.
    Liu Y, Liu B, Nie Z. Nano Today, 2015, 10: 278–300CrossRefGoogle Scholar
  4. 4.
    Cheng X, Sun R, Yin L, Chai Z, Shi H, Gao M. Adv Mater, 2017, 29: 1604894CrossRefGoogle Scholar
  5. 5.
    Rengan AK, Bukhari AB, Pradhan A, Malhotra R, Banerjee R, Srivastava R, De A. Nano Lett, 2015, 15: 842–848CrossRefGoogle Scholar
  6. 6.
    He J, Huang X, Li YC, Liu Y, Babu T, Aronova MA, Wang S, Lu Z, Chen X, Nie Z. J Am Chem Soc, 2013, 135: 7974–7984CrossRefGoogle Scholar
  7. 7.
    Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, Li W, He J, Cui D, Lu G, Chen X, Nie Z. ACS Nano, 2013, 7: 5320–5329CrossRefGoogle Scholar
  8. 8.
    Huang T, Li H, Huang L, Li S, Li K, Zhou Y. Langmuir, 2016, 32: 991–996CrossRefGoogle Scholar
  9. 9.
    Duan B, Zhou J, Fang Z, Wang C, Wang X, Hemond HF, Chan-Park MB, Duan H. Nanoscale, 2015, 7: 12606–12613CrossRefGoogle Scholar
  10. 10.
    Song J, Zhou J, Duan H. J Am Chem Soc, 2012, 134: 13458–13469CrossRefGoogle Scholar
  11. 11.
    Peng E, Wang F, Xue JM. J Mater Chem B, 2015, 3: 2241–2276CrossRefGoogle Scholar
  12. 12.
    Ling D, Park W, Park SJ, Lu Y, Kim KS, Hackett MJ, Kim BH, Yim H, Jeon YS, Na K, Hyeon T. J Am Chem Soc, 2014, 136: 5647–5655CrossRefGoogle Scholar
  13. 13.
    Choo ESG, Peng E, Rajendran R, Chandrasekharan P, Yang CT, Ding J, Chuang KH, Xue J. Adv Funct Mater, 2013, 23: 496–505CrossRefGoogle Scholar
  14. 14.
    Niu D, Zhang Z, Jiang S, Ma Z, Liu X, Li Y, Zhou L, Liu C, Li Y, Shi J. J Mater Chem, 2012, 22: 24936–24944CrossRefGoogle Scholar
  15. 15.
    Liu Y, Liu Y, Yin JJ, Nie Z. Macromol Rapid Commun, 2015, 36: 711–725CrossRefGoogle Scholar
  16. 16.
    Li HJ, Du JZ, Du XJ, Xu CF, Sun CY, Wang HX, Cao ZT, Yang XZ, Zhu YH, Nie S, Wang J. Proc Natl Acad Sci USA, 2016, 113: 4164–4169CrossRefGoogle Scholar
  17. 17.
    Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, Lott JR, Lodge TP, Radosz M, Zhao Y. Adv Mater, 2014, 26: 7615–7621CrossRefGoogle Scholar
  18. 18.
    Li HJ, Du JZ, Liu J, Du XJ, Shen S, Zhu YH, Wang X, Ye X, Nie S, Wang J. ACS Nano, 2016, 10: 6753–6761CrossRefGoogle Scholar
  19. 19.
    Tian Z, Yang C, Wang W, Yuan Z. ACS Appl Mater Interfaces, 2014, 6: 17865–17876CrossRefGoogle Scholar
  20. 20.
    Ma J, Hu Z, Wang W, Wang X, Wu Q, Yuan Z. ACS Appl Mater Interfaces, 2017, 9: 16767–16777CrossRefGoogle Scholar
  21. 21.
    Niikura K, Iyo N, Matsuo Y, Mitomo H, Ijiro K. ACS Appl Mater Interfaces, 2013, 5: 3900–3907CrossRefGoogle Scholar
  22. 22.
    Xu L, Kuang H, Xu C, Ma W, Wang L, Kotov NA. J Am Chem Soc, 2012, 134: 1699–1709CrossRefGoogle Scholar
  23. 23.
    Chen G, Wang Y, Yang M, Xu J, Goh SJ, Pan M, Chen H. J Am Chem Soc, 2010, 132: 3644–3645CrossRefGoogle Scholar
  24. 24.
    Qian X, Li J, Nie S. J Am Chem Soc, 2009, 131: 7540–7541CrossRefGoogle Scholar
  25. 25.
    Nam J, Won N, Jin H, Chung H, Kim S. J Am Chem Soc, 2009, 131: 13639–13645CrossRefGoogle Scholar
  26. 26.
    Yue Y, Huo F, Ning P, Zhang Y, Chao J, Meng X, Yin C. J Am Chem Soc, 2017, 139: 3181–3185CrossRefGoogle Scholar
  27. 27.
    Cui T, Liang JJ, Chen H, Geng DD, Jiao L, Yang JY, Qian H, Zhang C, Ding Y. ACS Appl Mater Interfaces, 2017, 9: 8569–8580CrossRefGoogle Scholar
  28. 28.
    Stricker L, Fritz EC, Peterlechner M, Doltsinis NL, Ravoo BJ. J Am Chem Soc, 2016, 138: 4547–4554CrossRefGoogle Scholar
  29. 29.
    Manna D, Udayabhaskararao T, Zhao H, Klajn R. Angew Chem Int Ed, 2015, 54: 12394–12397CrossRefGoogle Scholar
  30. 30.
    Maity C, Hendriksen WE, van Esch JH, Eelkema R. Angew Chem Int Ed, 2015, 54: 998–1001CrossRefGoogle Scholar
  31. 31.
    Kundu PK, Samanta D, Leizrowice R, Margulis B, Zhao H, Börner M, Udayabhaskararao T, Manna D, Klajn R. Nat Chem, 2015, 7: 646–652CrossRefGoogle Scholar
  32. 32.
    Pascall AJ, Qian F, Wang G, Worsley MA, Li Y, Kuntz JD. Adv Mater, 2014, 26: 2252–2256CrossRefGoogle Scholar
  33. 33.
    Barhoumi A, Wang W, Zurakowski D, Langer RS, Kohane DS. Nano Lett, 2014, 14: 3697–3701CrossRefGoogle Scholar
  34. 34.
    Webb BA, Chimenti M, Jacobson MP, Barber DL. Nat Rev Cancer, 2011, 11: 671–677CrossRefGoogle Scholar
  35. 35.
    Zhang X, Lin Y, Gillies RJ. J Nucl Med, 2010, 51: 1167–1170CrossRefGoogle Scholar
  36. 36.
    Chen G, Wang Y, Xie R, Gong S. J Control Release, 2017, 259: 105–114CrossRefGoogle Scholar
  37. 37.
    Xiao H, Qi R, Li T, Awuah SG, Zheng Y, Wei W, Kang X, Song H, Wang Y, Yu Y, Bird MA, Jing X, Yaffe MB, Birrer MJ, Ghoroghchian PP. J Am Chem Soc, 2017, 139: 3033–3044CrossRefGoogle Scholar
  38. 38.
    Guo H, Wang W, Yang C, Yuan Z. J Control Release, 2013, 172: e95–e96Google Scholar
  39. 39.
    Du C, Deng D, Shan L, Wan S, Cao J, Tian J, Achilefu S, Gu Y. Biomaterials, 2013, 34: 3087–3097CrossRefGoogle Scholar
  40. 40.
    Chang B, Sha X, Guo J, Jiao Y, Wang C, Yang W. J Mater Chem, 2011, 21: 9239–9247CrossRefGoogle Scholar
  41. 41.
    Liu LH, Qiu WX, Zhang YH, Li B, Zhang C, Gao F, Zhang L, Zhang XZ. Adv Funct Mater, 2017, 27: 1700220CrossRefGoogle Scholar
  42. 42.
    Han K, Zhang WY, Zhang J, Lei Q, Wang SB, Liu JW, Zhang XZ, Han HY. Adv Funct Mater, 2016, 26: 4351–4361CrossRefGoogle Scholar
  43. 43.
    Chen S, Rong L, Lei Q, Cao PX, Qin SY, Zheng DW, Jia HZ, Zhu JY, Cheng SX, Zhuo RX, Zhang XZ. Biomaterials, 2016, 77: 149–163CrossRefGoogle Scholar
  44. 44.
    Du J, Lane LA, Nie S. J Control Release, 2015, 219: 205–214CrossRefGoogle Scholar
  45. 45.
    Li J, Xiao H, Yoon SJ, Liu C, Matsuura D, Tai W, Song L, O’Donnell M, Cheng D, Gao X. Small, 2016, 12: 4690–4696CrossRefGoogle Scholar
  46. 46.
    Ma X, Wang Y, Zhao T, Li Y, Su LC, Wang Z, Huang G, Sumer BD, Gao J. J Am Chem Soc, 2014, 136: 11085–11092CrossRefGoogle Scholar
  47. 47.
    Liu Y, Li Y, He J, Duelge KJ, Lu Z, Nie Z. J Am Chem Soc, 2014, 136: 2602–2610CrossRefGoogle Scholar
  48. 48.
    Hu Z, Ma J, Fu F, Cui C, Li X, Wang X, Wang W, Wan Y, Yuan Z. J Control Release, 2017, 268: 1–9CrossRefGoogle Scholar
  49. 49.
    Gao X, Yue Q, Liu Z, Ke M, Zhou X, Li S, Zhang J, Zhang R, Chen L, Mao Y, Li C. Adv Mater, 2017, 29: 1603917CrossRefGoogle Scholar
  50. 50.
    Xing R, Liu K, Jiao T, Zhang N, Ma K, Zhang R, Zou Q, Ma G, Yan X. Adv Mater, 2016, 28: 3669–3676CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jinlong Ma
    • 1
  • Xiaomin Li
    • 1
  • Zhenpeng Hu
    • 1
  • Xinyu Wang
    • 1
  • Yapei Zhang
    • 1
  • Wei Wang
    • 1
  • Qiang Wu
    • 1
  • Zhi Yuan
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of ChemistryNankai UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjinChina

Personalised recommendations