Science China Chemistry

, Volume 62, Issue 1, pp 67–73 | Cite as

Efficient organic-inorganic hybrid cathode interfacial layer enabled by polymeric dopant and its application in large-area polymer solar cells

  • Sheng Dong
  • Kai ZhangEmail author
  • Xiang Liu
  • Qingwu Yin
  • Hin-Lap Yip
  • Fei HuangEmail author
  • Yong Cao


An organic-inorganic hybrid cathode interfacial layer (CIL) was developed by doping ZnO with the naphthalene-diimide based derivative NDI-PFNBr. It was found the resulting organic-inorganic hybrid CIL showed apparently improved conductivity and could act as an effective cathode interlayer to modify indium tin oxide (ITO) transparent electrodes. As a result, by employing the blend of PTB7-Th:PC71BM as the photoactive layer, the inverted polymer solar cells (PSCs) exhibited a remarkable enhancement of power conversion efficiency (PCE) from 8.52% for the control device to 10.04% for the device fabricated with the hybrid CIL. Moreover, all device parameters were simultaneously improved by using this hybrid CIL. The improved open-circuit voltage (VOC) was attributed to the reduced work function of the ITO cathode, whereas the enhancements in fill factor (FF) and short-circuit current density (JSC) were assigned to the increased conductivity and more effective charge extraction and collection at interface. Encouragingly, when the thickness of the hybrid CIL was increased to 80 nm, the resulting device could still keep a PCE of 8.81%, exhibiting less thickness dependence. Considering these advantages, 16 and 93 cm2 large-area PSCs modules were successfully fabricated from the hybrid CIL by using doctor-blade coating techniques and yielded a remarkable PCE of 8.05% and 4.49%, respectively. These results indicated that the hybrid CIL could be a promising candidate to serve as the cathode interlayer for high-performance large-area inverted PSCs.


hybrid cathode interfacial layer large-area module doctor-blade coating polymer solar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Ministry of Science and Technology (2014CB643501) and the National Natural Science Foundation of China (91633301, 21520102006, 51521002, 51603070).

Supplementary material

11426_2018_9350_MOESM1_ESM.pdf (623 kb)
Efficient organic-inorganic hybrid cathode interfacial layer enabled by polymeric dopant and its application in large-area polymer solar cells


  1. 1.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791CrossRefGoogle Scholar
  2. 2.
    Cheng YJ, Yang SH, Hsu CS. Chem Rev, 2009, 109: 5868–5923CrossRefGoogle Scholar
  3. 3.
    Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Chem Rev, 2015, 115: 12666–12731CrossRefGoogle Scholar
  4. 4.
    Zuo L, Zhang S, Shi M, Li H, Chen H. Mater Chem Front, 2017, 1: 304–309CrossRefGoogle Scholar
  5. 5.
    Ying L, Huang F, Bazan GC. Nat Commun, 2017, 8: 14047CrossRefGoogle Scholar
  6. 6.
    Cheng P, Zhan X. Chem Soc Rev, 2016, 45: 2544–2582CrossRefGoogle Scholar
  7. 7.
    Li Y. Acc Chem Res, 2012, 45: 723–733CrossRefGoogle Scholar
  8. 8.
    Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397–7457CrossRefGoogle Scholar
  9. 9.
    Cai Y, Huo L, Sun Y. Adv Mater, 2017, 29: 1605437CrossRefGoogle Scholar
  10. 10.
    Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571–582CrossRefGoogle Scholar
  11. 11.
    Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Chem Rev, 2014, 114: 7006–7043CrossRefGoogle Scholar
  12. 12.
    Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Jiang K, Carpenter JH, Li H, Li Z, McAfee T, Zhao J, Chen X, Lai JLY, Ma T, Bredas JL, Yan H, Ade H. Nat Mater, 2018, 17: 253–260CrossRefGoogle Scholar
  13. 13.
    Xiao M, Zhang K, Jin Y, Yin Q, Zhong W, Huang F, Cao Y. Nano Energy, 2018, 48: 53–62CrossRefGoogle Scholar
  14. 14.
    Yip HL, Jen AKY. Energy Environ Sci, 2012, 5: 5994–6011CrossRefGoogle Scholar
  15. 15.
    Litzov I, Brabec CJ. Materials, 2013, 6: 5796–5820CrossRefGoogle Scholar
  16. 16.
    Choy WCH, Zhang D. Small, 2016, 12: 416–431CrossRefGoogle Scholar
  17. 17.
    Zhang K, Huang F, Cao Y, Acta Polym Sin, 2017: 1400–1414Google Scholar
  18. 18.
    Cui C, Li Y, Li Y. Adv Energy Mater, 2017, 7: 1601251CrossRefGoogle Scholar
  19. 19.
    Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562–1564CrossRefGoogle Scholar
  20. 20.
    Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868CrossRefGoogle Scholar
  21. 21.
    Zhang J, Xue R, Xu G, Chen W, Bian GQ, Wei C, Li Y, Li Y. Adv Funct Mater, 2018, 28: 1705847CrossRefGoogle Scholar
  22. 22.
    Duan C, Zhang K, Zhong C, Huang F, Cao Y. Chem Soc Rev, 2013, 42: 9071CrossRefGoogle Scholar
  23. 23.
    Hu Z, Zhang K, Huang F, Cao Y. Chem Commun, 2015, 51: 5572–5585CrossRefGoogle Scholar
  24. 24.
    Yin Z, Wei J, Zheng Q. Adv Sci, 2016, 3: 1500362CrossRefGoogle Scholar
  25. 25.
    Hau SK, Yip HL, Jen AKY. Polymer Rev, 2010, 50: 474–510CrossRefGoogle Scholar
  26. 26.
    Wang K, Liu C, Meng T, Yi C, Gong X. Chem Soc Rev, 2016, 45: 2937–2975CrossRefGoogle Scholar
  27. 27.
    White MS, Olson DC, Shaheen SE, Kopidakis N, Ginley DS. Appl Phys Lett, 2006, 89: 143517CrossRefGoogle Scholar
  28. 28.
    Hau SK, Yip HL, Baek NS, Zou J, O’Malley K, Jen AKY. Appl Phys Lett, 2008, 92: 253301CrossRefGoogle Scholar
  29. 29.
    MacLeod BA, Tremolet de Villers BJ, Schulz P, Ndione PF, Kim H, Giordano AJ, Zhu K, Marder SR, Graham S, Berry JJ, Kahn A, Olson DC. Energy Environ Sci, 2015, 8: 592–601CrossRefGoogle Scholar
  30. 30.
    Bai S, Jin Y, Liang X, Ye Z, Wu Z, Sun B, Ma Z, Tang Z, Wang J, Würfel U. Adv Energy Mater, 2015, 5: 286–287CrossRefGoogle Scholar
  31. 31.
    Hewlett RM, McLachlan MA. Adv Mater, 2016, 28: 3893–3921CrossRefGoogle Scholar
  32. 32.
    Fu P, Guo X, Zhang B, Chen T, Qin W, Ye Y, Hou J, Zhang J, Li C. J Mater Chem A, 2016, 4: 16824–16829CrossRefGoogle Scholar
  33. 33.
    Liu C, Zhang L, Xiao L, Peng X, Cao Y. ACS Appl Mater Interfaces, 2016, 8: 28225–28230CrossRefGoogle Scholar
  34. 34.
    Liu X, Li X, Li Y, Song C, Zhu L, Zhang W, Wang HQ, Fang J. Adv Mater, 2016, 28: 7405–7412CrossRefGoogle Scholar
  35. 35.
    Nian L, Zhang W, Wu S, Qin L, Liu L, Xie Z, Wu H, Ma Y. ACS Appl Mater Interfaces, 2015, 7: 25821–25827CrossRefGoogle Scholar
  36. 36.
    Liao SH, Jhuo HJ, Cheng YS, Chen SA. Adv Mater, 2013, 25: 4766–4771CrossRefGoogle Scholar
  37. 37.
    Nian L, Zhang W, Zhu N, Liu L, Xie Z, Wu H, Würthner F, Ma Y. J Am Chem Soc, 2015, 137: 6995–6998CrossRefGoogle Scholar
  38. 38.
    Xie Z, Würthner F. Adv Energy Mater, 2017, 7: 1602573CrossRefGoogle Scholar
  39. 39.
    Zheng D, Huang W, Fan P, Zheng Y, Huang J, Yu J. ACS Appl Mater Interfaces, 2017, 9: 4898–4907CrossRefGoogle Scholar
  40. 40.
    Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2016, 138: 2004–2013CrossRefGoogle Scholar
  41. 41.
    Wu N, Luo Q, Bao Z, Lin J, Li YQ, Ma CQ. Sol Energy Mater Sol Cells, 2015, 141: 248–259CrossRefGoogle Scholar
  42. 42.
    Wang J, Yan C, Zhang X, Zhao X, Fu Y, Zhang B, Xie Z. J Mater Chem C, 2016, 4: 10820–10826CrossRefGoogle Scholar
  43. 43.
    Sugiyama K, Ishii H, Ouchi Y, Seki K. J Appl Phys, 2000, 87: 295–298CrossRefGoogle Scholar
  44. 44.
    Mandoc MM, Kooistra FB, Hummelen JC, de Boer B, Blom PWM. Appl Phys Lett, 2007, 91: 263505CrossRefGoogle Scholar
  45. 45.
    Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Appl Phys Lett, 2005, 86: 123509CrossRefGoogle Scholar
  46. 46.
    Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 1771–1782CrossRefGoogle Scholar
  47. 47.
    Cowan SR, Street RA, Cho S, Heeger AJ. Phys Rev B, 2011, 83: 8CrossRefGoogle Scholar
  48. 48.
    Lu L, Xu T, Chen W, Landry ES, Yu L. Nat Photon, 2014, 8: 716–722CrossRefGoogle Scholar
  49. 49.
    Lee EJ, Heo SW, Han YW, Moon DK. J Mater Chem C, 2016, 4: 2463–2469CrossRefGoogle Scholar
  50. 50.
    Hong S, Kang H, Kim G, Lee S, Kim S, Lee JH, Lee J, Yi M, Kim J, Back H, Kim JR, Lee K. Nat Commun, 2016, 7: 10279CrossRefGoogle Scholar
  51. 51.
    Zuo L, Zhang S, Li H, Chen H. Adv Mater, 2015, 27: 6983–6989CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouChina

Personalised recommendations