Advertisement

Science China Chemistry

, Volume 62, Issue 1, pp 95–104 | Cite as

Redox-responsive ferrocene-containing poly(ionic liquid)s for antibacterial applications

  • Tikai Zhang
  • Jiangna Guo
  • Yingying Ding
  • Hailei MaoEmail author
  • Feng YanEmail author
Articles
  • 26 Downloads

Abstract

Ferrocene (Fc)-containing imidazolium type ionic liquids (ILs) and corresponding poly(ionic liquid) (PIL) membranes with tunable antibacterial activity based on electrochemical redox reaction and host-guest chemistry were developed. The effect of Fc moiety on the antimicrobial activities against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was studied by minimum inhibitory concentration (MIC). The presence of Fc groups highly enhanced the antibacterial efficiency of Fccontaining ILs because of the generation of reactive oxygen species (ROS). The electrochemical oxidation of Fc to Fc+ and the formation of inclusion complexes between Fc and β-CD via host-guest interactions decreased the antibacterial activities of ILs and PIL membranes. The antibacterial activities may be recovered in some extent upon the electrochemical reduction of Fc+ to Fc or the exclusion of the Fc out of the cavity of β-CD. Furthermore, all the Fc-containing PIL membranes showed relatively low hemolysis activities and none cytotoxicity toward human cells, indicating clinical feasibility in topical applications.

Keywords

antibacterial activities imidazolium cations ferrocene poly(ionic liquid) cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Science Foundation for Distinguished Young Scholars (21425417), the National Natural Science Foundation of China (21704071), the Jiangsu Province Science Foundation for Youth (BK20170332), General Program Foundation of Jiangsu Province University Science Research Project (17KJB150033), General Program Foundation of Shanghai Municipal Commission of Health and Family Planning (201740107), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Science and Technology Innovation Fund Project of Zhongshan Hospital, Fudan University (2017ZSCX03).

Supplementary material

11426_2018_9348_MOESM1_ESM.pdf (650 kb)
Redox-responsive ferrocene-containing poly(ionic liquid)s for antibacterial applications

References

  1. 1.
    Ng VWL, Ke X, Lee ALZ, Hedrick JL, Yang YY. Adv Mater, 2013, 25: 6730–6736CrossRefGoogle Scholar
  2. 2.
    Tao WX, Zhu MH, Deng ZX, Sun YH. Sci China Chem, 2013, 56: 1364–1371CrossRefGoogle Scholar
  3. 3.
    Miller AJM, Heinekey DM, Mayer JM, Goldberg KI. Angew Chem Int Ed, 2013, 52: 3981–3984CrossRefGoogle Scholar
  4. 4.
    Sun Y, Sun G. Macromolecules, 2002, 35: 8909–8912CrossRefGoogle Scholar
  5. 5.
    Jin JY, Ouyang XY, Li JS, Jiang JH, Wang H, Wang YX, Yang RH. Sci China Chem, 2011, 54: 1266–1272CrossRefGoogle Scholar
  6. 6.
    Shah P, Yue Q, Zhu X, Xu F, Wang HS, Li CZ. Sci China Chem, 2015, 58: 1600–1604CrossRefGoogle Scholar
  7. 7.
    Qin J, Guo J, Xu Q, Zheng Z, Mao H, Yan F. ACS Appl Mater Interfaces, 2017, 9: 10504–10511CrossRefGoogle Scholar
  8. 8.
    Zheng Z, Xu Q, Guo J, Qin J, Mao H, Wang B, Yan F. ACS Appl Mater Interfaces, 2016, 8: 12684–12692CrossRefGoogle Scholar
  9. 9.
    Cui H, Yuan L, Lin L. Carbohydr Polymers, 2017, 177: 156–164CrossRefGoogle Scholar
  10. 10.
    Zhang J, He X, Zhang P, Ma Y, Ding Y, Wang Z, Zhang Z. Sci China Chem, 2015, 58: 761–767CrossRefGoogle Scholar
  11. 11.
    Long Y, Wang Y, Liu Y, Zeng Q, Li Y. Sci China Chem, 2015, 58: 666–672CrossRefGoogle Scholar
  12. 12.
    Wang L, Su B, Cheng C, Ma L, Li S, Nie S, Zhao C. J Mater Chem B, 2014, 3: 1391–1404CrossRefGoogle Scholar
  13. 13.
    Yang Z, Yu H, Zhang L, Wei H, Xiao Y, Chen L, Guo H. Chem Asian J, 2014, 9: 313–318CrossRefGoogle Scholar
  14. 14.
    Sundararaman M, Rajesh Kumar R, Venkatesan P, Ilangovan A. J Med Microbiol, 2013, 62: 241–248CrossRefGoogle Scholar
  15. 15.
    Huang Y, Pappas HC, Zhang L, Wang S, Cai R, Tan W, Wang S, Whitten DG, Schanze KS. Chem Mater, 2017, 29: 6389–6395CrossRefGoogle Scholar
  16. 16.
    Chait R, Craney A, Kishony R. Nature, 2007, 446: 668–671CrossRefGoogle Scholar
  17. 17.
    Zhang Q, Lambert G, Liao D, Kim H, Robin K, Tung C, Pourmand N, Austin RH. Science, 2011, 333: 1764–1767CrossRefGoogle Scholar
  18. 18.
    Huang Z, Zhang H, Bai H, Bai Y, Wang S, Zhang X. ACS Macro Lett, 2016, 5: 1109–1113CrossRefGoogle Scholar
  19. 19.
    Bai H, Zhang H, Hu R, Chen H, Lv F, Liu L, Wang S. Langmuir, 2017, 33: 1116–1120CrossRefGoogle Scholar
  20. 20.
    Bai H, Fu X, Huang Z, Lv F, Liu L, Zhang X, Wang S. Chemistryselect, 2017, 2: 7940–7945CrossRefGoogle Scholar
  21. 21.
    Bai H, Yuan H, Nie C, Wang B, Lv F, Liu L, Wang S. Angew Chem Int Ed, 2015, 54: 13208–13213CrossRefGoogle Scholar
  22. 22.
    Wei T, Zhan W, Cao L, Hu C, Qu Y, Yu Q, Chen H. ACS Appl Mater Interfaces, 2016, 8: 30048–30057CrossRefGoogle Scholar
  23. 23.
    Subianto S, Mistry MK, Choudhury NR, Dutta NK, Knott R. ACS Appl Mater Interfaces, 2009, 1: 1173–1182CrossRefGoogle Scholar
  24. 24.
    Mehta MJ, Kumar A. Chem Asian J, 2017, 12: 3150–3155CrossRefGoogle Scholar
  25. 25.
    Chin W, Yang C, Ng VWL, Huang Y, Cheng J, Tong YW, Coady DJ, Fan W, Hedrick JL, Yang YY. Macromolecules, 2013, 46: 8797–8807CrossRefGoogle Scholar
  26. 26.
    Szente L, Puskás I, Csabai K, Fenyvesi É. Chem Asian J, 2014, 9: 1365–1372CrossRefGoogle Scholar
  27. 27.
    Sun Z, Liu X, Guo J, Xu D, Shen S, Yan F. Chem Asian J, 2017, 12: 2950–2955CrossRefGoogle Scholar
  28. 28.
    Wang XC, Wu JY, Zhou HP, Tian YP, Li L, Yang JX, Jin BK, Zhang SY. Sci China Ser B-Chem, 2009, 52: 930–936CrossRefGoogle Scholar
  29. 29.
    Li SH, Wu CY, Lv XY, Tang X, Zhao XQ, Yan H, Jiang H, Wang XM. Sci China Chem, 2012, 55: 2388–2395CrossRefGoogle Scholar
  30. 30.
    Li SH, Wu CY, Tang X, Gao SP, Zhao XQ, Yan H, Wang XM. Sci China Chem, 2013, 56: 595–603CrossRefGoogle Scholar
  31. 31.
    Xu G, Pranantyo D, Xu L, Neoh KG, Kang ET, Teo SLM. Ind Eng Chem Res, 2016, 55: 10906–10915CrossRefGoogle Scholar
  32. 32.
    Lewandowski EM, Szczupak Ł, Wong S, Skiba J, Guśpiel A, Solecka J, Vrček V, Kowalski K, Chen Y. Organometallics, 2017, 36: 1673–1676CrossRefGoogle Scholar
  33. 33.
    Savjani KT, Gajjar AK, Savjani JK. ISRN Pharm, 2012, 2012: 1–10Google Scholar
  34. 34.
    Chaudhary VB, Patel JK. Int J Pharm Sci Res, 2013, 4: 68–76Google Scholar
  35. 35.
    Kumar S, Bhargava D, Thakkar A, Arora S. Crit Rev Ther Drug Carrier Syst, 2013, 30: 217–256CrossRefGoogle Scholar
  36. 36.
    Svenson S, Chauhan AS. Nanomedicine, 2008, 3: 679–702CrossRefGoogle Scholar
  37. 37.
    Yuan C, Guo J, Tan M, Guo M, Qiu L, Yan F. ACS Macro Lett, 2014, 3: 271–275CrossRefGoogle Scholar
  38. 38.
    Cao D, Liu W, Wei X, Xu F, Cui L, Cao Y. Tissue Eng, 2006, 12: 1369–1377CrossRefGoogle Scholar
  39. 39.
    Locock KES, Michl TD, Stevens N, Hayball JD, Vasilev K, Postma A, Griesser HJ, Meagher L, Haeussler M. ACS Macro Lett, 2014, 3: 319–323CrossRefGoogle Scholar
  40. 40.
    Pu F, Liu X, Xu B, Ren J, Qu X. Chem Eur J, 2012, 18: 4322–4328CrossRefGoogle Scholar
  41. 41.
    Li P, Zhou C, Rayatpisheh S, Ye K, Poon YF, Hammond PT, Duan H, Chan-Park MB. Adv Mater, 2012, 24: 4130–4137CrossRefGoogle Scholar
  42. 42.
    Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN. Mater Sci Eng-RRep, 2007, 57: 28–64CrossRefGoogle Scholar
  43. 43.
    Fischer W. Med Microbiol Immunol, 1994, 183: 61–76CrossRefGoogle Scholar
  44. 44.
    Patra M, Gasser G, Wenzel M, Merz K, Bandow JE, Metzler-Nolte N. Organometallics, 2010, 29: 4312–4319CrossRefGoogle Scholar
  45. 45.
    Beveridge TJ. J Bacteriol, 1999, 181: 4725–4733Google Scholar
  46. 46.
    Palermo EF, Sovadinova I, Kuroda K. Biomacromolecules, 2009, 10: 3098–3107CrossRefGoogle Scholar
  47. 47.
    Acevedo-Morantes CY, Melendez E, Singh SP, Ramirez-Vick JE. J Cancer Sci Ther, 2012, 4: 271–275Google Scholar
  48. 48.
    Nakahata M, Takashima Y, Yamaguchi H, Harada A. Nat Commun, 2011, 2: 511CrossRefGoogle Scholar
  49. 49.
    Lin B, Qiu L, Lu J, Yan F. Chem Mater, 2010, 22: 6718–6725CrossRefGoogle Scholar
  50. 50.
    Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, Hedrick JL, Yang YY. Nat Chem, 2011, 3: 409–414CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  2. 2.Department of Anesthesiology and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina

Personalised recommendations