Advertisement

Science China Chemistry

, Volume 62, Issue 1, pp 62–66 | Cite as

Base-catalyzed diborylation of alkynes: synthesis and applications of cis-1,2-bis(boryl)alkenes

  • Zhijie Kuang
  • Guoliang Gao
  • Qiuling SongEmail author
Communications
  • 75 Downloads

Abstract

An efficient, transition-metal free, and practical approach to cis-bis(boryl)alkenes from various alkynes was disclosed in the presence of a catalytic amount of K2CO3 under mild conditions. Meanwhile, tetrasubstituted alkenes and phenanthrene derivatives were readily constructed from the target diborylalkenes via Suzuki-Miyaura cross coupling.

Keywords

base-catalyzed diborylation of alkynes cis-1,2-bis(boryl)alkenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation (21772046), Program of Innovative Research Team of Huaqiao University (Z14X0047), the Recruitment Program of Global Experts (1000 Talents Plan), the Natural Science Foundation of Fujian Province (2016J01064) and Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University for K. Z. We also thank Instrumental Analysis Center of Huaqiao University.

Supplementary material

11426_2018_9344_MOESM1_ESM.docx (3.3 mb)
Base-catalyzed diborylation of alkynes: synthesis and applications of cis-1,2-bis(boryl)alkenes

References

  1. 1.
    (a) Meier H. Angew Chem Int Ed Engl, 1992, 31: 1399–1420CrossRefGoogle Scholar
  2. (b).
    Lo SC, Burn PL. Chem Rev, 2007, 107: 1097–1116CrossRefGoogle Scholar
  3. (c).
    Neeve EC, Geier SJ, Mkhalid IAI, Westcott SA, Marder TB. Chem Rev, 2016, 116: 9091–9161CrossRefGoogle Scholar
  4. (d).
    Cuenca AB, Shishido R, Ito H, Fernández E. Chem Soc Rev, 2017, 46: 415–430CrossRefGoogle Scholar
  5. 2.
    (a) Roupe K, Remsberg C, Yanez J, Davies N. Curr Clin Pharm, 2006, 1: 81–101CrossRefGoogle Scholar
  6. (b).
    Cottart CH, Nivet-Antoine V, Beaudeux JL. Mol Nutr Food Res, 2014, 58: 7–21CrossRefGoogle Scholar
  7. (c).
    Wang C, Wu C, Ge S. ACS Catal, 2016, 6: 7585–7589CrossRefGoogle Scholar
  8. (d).
    Xu L, Zhang S, Li P. Chem Soc Rev, 2015, 44: 8848–8858CrossRefGoogle Scholar
  9. 3.
    (a) Flynn AB, Ogilvie WW. Chem Rev, 2007, 107: 4698–4745CrossRefGoogle Scholar
  10. (b).
    Hata T, Kitagawa H, Masai H, Kurahashi T, Shimizu M, Hiyama T. Angew Chem Int Ed, 2001, 40: 790–792CrossRefGoogle Scholar
  11. 4.
    (a) Faggi E, Sebastian RM, Pleixats R, Vallribera A, Shafir A, Rodriguez-Gimeno A, Ramirez de Arellano C. J Am Chem Soc, 2010, 132: 17980–17982CrossRefGoogle Scholar
  12. (b).
    Shimizu M, Nagao I, Tomioka Y, Hiyama T. Angew Chem Int Ed, 2008, 47: 8096–8099CrossRefGoogle Scholar
  13. (c).
    Shimizu M, Nagao I, Tomioka Y, Kadowaki T, Hiyama T. Tetrahedron, 2011, 67: 8014–8026CrossRefGoogle Scholar
  14. 5.
    Yoshida H, Kawashima S, Takemoto Y, Okada K, Ohshita J, Takaki K. Angew Chem Int Ed, 2012, 51: 235–238CrossRefGoogle Scholar
  15. 6.
    (a) Lee CI, Shih WC, Zhou J, Reibenspies JH, Ozerov OV. Angew Chem Int Ed, 2015, 54: 14003–14007CrossRefGoogle Scholar
  16. (b).
    Iwadate N, Suginome M. J Am Chem Soc, 2010, 132: 2548–2549CrossRefGoogle Scholar
  17. 7.
    (a) Baker RT, Nguyen P, Marder TB, Westcott SA. Angew Chem Int Ed Engl, 1995, 34: 1336–1338CrossRefGoogle Scholar
  18. (b).
    Ramírez J, Sanaú M, Fernández E. Angew Chem Int Ed, 2008, 47: 5194–5197CrossRefGoogle Scholar
  19. (c).
    Chen Q, Zhao J, Ishikawa Y, Asao N, Yamamoto Y, Jin T. Org Lett, 2013, 15: 5766–5769CrossRefGoogle Scholar
  20. 8.
    Nakagawa N, Hatakeyama T, Nakamura M. Chem Eur J, 2015, 21: 4257–4261CrossRefGoogle Scholar
  21. 9.
    (a) Ishiyama T, Matsuda N, Miyaura N, Suzuki A. J Am Chem Soc, 1993, 115: 11018–11019CrossRefGoogle Scholar
  22. (b).
    Ishiyama T, Matsuda N, Murata M, Ozawa F, Suzuki A, Miyaura N. Organometallics, 1996, 15: 713–720CrossRefGoogle Scholar
  23. (c).
    Lesley G, Nguyen P, Taylor NJ, Marder TB, Scott AJ, Clegg W, Norman NC. Organometallics, 1996, 15: 5137–5154CrossRefGoogle Scholar
  24. (d).
    Thomas RL, Souza FES, Marder TB. J Chem Soc Dalton Trans, 2001, 30: 1650–1656CrossRefGoogle Scholar
  25. (e).
    Burks HE, Kliman LT, Morken JP. J Am Chem Soc, 2009, 131: 9134–9135CrossRefGoogle Scholar
  26. (f).
    Alonso F, Moglie Y, Pastor-Pérez L, Sepúlveda-Escribano A. ChemCatChem, 2014, 6: 857–865CrossRefGoogle Scholar
  27. 10.
    (a) Adams CJ, Baber RA, Batsanov AS, Bramham G, Charmant JPH, Haddow MF, Howard JAK, Lam WH, Lin Z, Marder TB, Norman NC, Orpen AG. Dalton Trans, 2006, 248: 1370–1373CrossRefGoogle Scholar
  28. (b).
    Yang Z, Cao T, Han Y, Lin W, Liu Q, Tang Y, Zhai Y, Jia M, Zhang W, Zhu T, Ma S. Chin J Chem, 2017, 35: 1251–1262CrossRefGoogle Scholar
  29. (c).
    Ansell MB, Menezes da Silva VH, Heerdt G, Braga AAC, Spencer J, Navarro O. Catal Sci Technol, 2016, 6: 7461–7467CrossRefGoogle Scholar
  30. 11.
    (a) Bonet A, Pubill-Ulldemolins C, Bo C, Gulyás H, Fernández E. Angew Chem Int Ed, 2011, 50: 7158–7161CrossRefGoogle Scholar
  31. (b).
    Miralles N, Cid J, Cuenca AB, Carbó JJ, Fernández E. Chem Commun, 2015, 51: 1693–1696CrossRefGoogle Scholar
  32. (c).
    Cuenca AB, Zigon N, Duplan V, Hoshino M, Fujita M, Fernández E. Chem Eur J, 2016, 22: 4723–4726CrossRefGoogle Scholar
  33. (d).
    Bonet A, Sole C, Gulyás H, Fernández E. Org Biomol Chem, 2012, 10: 6621–6623eCrossRefGoogle Scholar
  34. (e).
    Blaisdell TP, Caya TC, Zhang L, Sanz-Marco A, Morken JP. J Am Chem Soc, 2014, 136: 9264–9267CrossRefGoogle Scholar
  35. (f).
    Miralles N, Alam R, Szabó KJ, Fernández E. Angew Chem Int Ed, 2016, 55: 4303–4307CrossRefGoogle Scholar
  36. (g).
    Deng CM, Ma YF, Wen YM. ChemistrySelect, 2018, 3: 1202–1204CrossRefGoogle Scholar
  37. 12.
    (a) Nagao K, Ohmiya H, Sawamura M. Org Lett, 2015, 17: 1304–1307CrossRefGoogle Scholar
  38. (b).
    Yoshimura A, Takamachi Y, Han LB, Ogawa A. Chem Eur J, 2015, 21: 13930–13933CrossRefGoogle Scholar
  39. (c).
    Yoshimura A, Takamachi Y, Mihara K, Saeki T, Kawaguchi S, Han LB, Nomoto A, Ogawa A. Tetrahedron, 2016, 72: 7832–7838CrossRefGoogle Scholar
  40. 13.
    (a) Nagashima Y, Hirano K, Takita R, Uchiyama M. J Am Chem Soc, 2014, 136: 8532–8535CrossRefGoogle Scholar
  41. (b).
    Kojima C, Lee KH, Lin Z, Yamashita M. J Am Chem Soc, 2016, 138: 6662–6669CrossRefGoogle Scholar
  42. (c).
    Verma A, Snead RF, Dai Y, Slebodnick C, Yang Y, Yu H, Yao F, Santos WL. Angew Chem Int Ed, 2017, 56: 5111–5115CrossRefGoogle Scholar
  43. 14.
    (a) Feng Q, Yang K, Song Q. Chem Commun, 2015, 51: 15394–15397CrossRefGoogle Scholar
  44. (b).
    Ding W, Song Q. Org Chem Front, 2016, 3: 14–18CrossRefGoogle Scholar
  45. (c).
    Kuang Z, Li B, Song Q. Chem Commun, 2018, 54: 34–37CrossRefGoogle Scholar
  46. (d).
    Xuan Q, Kong W, Song Q. J Org Chem, 2017, 82: 7602–7607CrossRefGoogle Scholar
  47. (e).
    Gao G, Yan J, Yang K, Chen F, Song Q. Green Chem, 2017, 19: 3997–4001CrossRefGoogle Scholar
  48. (f).
    Yang K, Song Q. Green Chem, 2016, 18: 932–936CrossRefGoogle Scholar
  49. (g).
    Gao G, Kuang Z, Song Q. Org Chem Front, 2018, 5: 2249–2253CrossRefGoogle Scholar
  50. 15.
    Tong S, Xu Z, Mamboury M, Wang Q, Zhu J. Angew Chem Int Ed, 2015, 54: 11809–11812CrossRefGoogle Scholar
  51. 16.
    The substrate material was synthesized with Ref. [5]Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Next Generation Matter Transformation, College of Chemical EngineeringHuaqiao UniversityXiamenChina
  2. 2.State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina

Personalised recommendations