Advertisement

Science China Chemistry

, Volume 62, Issue 1, pp 87–94 | Cite as

Tofu-inspired microcarriers from droplet microfluidics for drug delivery

  • Han Zhang
  • Yuxiao Liu
  • Jie Wang
  • Changmin Shao
  • Yuanjin ZhaoEmail author
Articles
  • 84 Downloads

Abstract

Microcarriers have attracted increasing interests in drug delivery. In order to develop this technique, it is prone to focus on the generation of functional particles through using simple approaches and novel but accessible materials. Here, inspired by the formation mechanism of tofu that through the mixing of soymilk and brine for cross-linking soybean proteins, we present novel soybean protein microcarriers by using microfluidic generation approach for drug delivery. Since the soybean protein droplets are generated by microfluidic emulsification method, the tofu microparticles present highly monodisperse and homogeneous morphologies. Because of the excellent biocompatibility of the soybean protein and the interconnected porous structures throughout the whole microparticles after freeze-drying, various kinds of drugs and active molecules could be absorbed and loaded in the microcarriers, which makes them versatile for drug delivery. It can be anticipated that the microfluidic-generated tofu microcarriers will have great potential in the biomedical field.

Keywords

tofu microfluidics microcarrier drug delivery particle droplet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2018_9340_MOESM1_ESM.docx (1.3 mb)
Tofu-inspired microcarriers from droplet microfluidics for drug delivery

References

  1. 1.
    Denkov N, Tcholakova S, Lesov I, Cholakova D, Smoukov SK. Nature, 2015, 528: 392–395CrossRefGoogle Scholar
  2. 2.
    McHugh KJ, Nguyen TD, Linehan AR, Yang D, Behrens AM, Rose S, Tochka ZL, Tzeng SY, Norman JJ, Anselmo AC, Xu X, Tomasic S, Taylor MA, Lu J, Guarecuco R, Langer R, Jaklenec A. Science, 2017, 357: 1138–1142CrossRefGoogle Scholar
  3. 3.
    Zhang YS, Khademhosseini A. Science, 2017, 356: eaaf3627Google Scholar
  4. 4.
    Yadavali S, Jeong HH, Lee D, Issadore D. Nat Commun, 2018, 9: 1222CrossRefGoogle Scholar
  5. 5.
    Zhang J, Wei H, Tan J, Qiao W, Guan Y, Zhang J. Sci China Chem, 2018, 61: 328–335CrossRefGoogle Scholar
  6. 6.
    Lei Y, Hamada Y, Li J, Cong L, Wang N, Li Y, Zheng W, Jiang X. J Control Release, 2016, 232: 131–142CrossRefGoogle Scholar
  7. 7.
    Lai WF, Shum HC. Nanoscale, 2016, 8: 517–528CrossRefGoogle Scholar
  8. 8.
    Wu S, Li J, Liang H, Wang L, Chen X, Jin G, Xu X, Yang HH. Sci China Chem, 2017, 60: 628–634CrossRefGoogle Scholar
  9. 9.
    Lee TY, Ku M, Kim B, Lee S, Yang J, Kim SH. Small, 2017, 13: 1700646CrossRefGoogle Scholar
  10. 10.
    Min NG, Ku M, Yang J, Kim SH. Chem Mater, 2016, 28: 1430–1438CrossRefGoogle Scholar
  11. 11.
    Lawrence MJ, Rees GD. Adv Drug Deliv Rev, 2012, 64: 175–193CrossRefGoogle Scholar
  12. 12.
    Allen TM, Cullis PR. Adv Drug Deliv Rev, 2013, 65: 36–48CrossRefGoogle Scholar
  13. 13.
    Dash TK, Konkimalla VB. J Control Release, 2012, 158: 15–33CrossRefGoogle Scholar
  14. 14.
    Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Int J Pharm Investig, 2012, 2: 2CrossRefGoogle Scholar
  15. 15.
    Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y. Adv Mater, 2017, 29: 1605765CrossRefGoogle Scholar
  16. 16.
    Song Y, Chan YK, Ma Q, Liu Z, Shum HC. ACS Appl Mater Interfaces, 2015, 7: 13925–13933CrossRefGoogle Scholar
  17. 17.
    Shum HC, Zhao Y, Kim SH, Weitz DA. Angew Chem, 2011, 123: 1686–1689CrossRefGoogle Scholar
  18. 18.
    Tang MYH, Shum HC. Lab Chip, 2016, 16: 4359–4365CrossRefGoogle Scholar
  19. 19.
    Sim JY, Lee GH, Kim SH. Small, 2015, 11: 4938–4945CrossRefGoogle Scholar
  20. 20.
    Kim SH, Weitz DA. Angew Chem, 2011, 123: 8890–8893CrossRefGoogle Scholar
  21. 21.
    Shang L, Cheng Y, Zhao Y. Chem Rev, 2017, 117: 7964–8040CrossRefGoogle Scholar
  22. 22.
    Ding W, Li Y, Xia H, Wang D, Tao X. ACS Nano, 2014, 8: 11206–11213CrossRefGoogle Scholar
  23. 23.
    Mao Z, Xu H, Wang D. Adv Funct Mater, 2010, 20: 1053–1074CrossRefGoogle Scholar
  24. 24.
    Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A. Biomaterials, 2016, 110: 45–59CrossRefGoogle Scholar
  25. 25.
    Zhang YS, Khademhosseini A. Nanomedicine, 2015, 10: 685–688CrossRefGoogle Scholar
  26. 26.
    Wang J, Zou M, Sun L, Cheng Y, Shang L, Fu F, Zhao Y. Sci China Mater, 2017, 60: 857–865CrossRefGoogle Scholar
  27. 27.
    Zhao Y, Cheng Y, Shang L, Wang J, Xie Z, Gu Z. Small, 2015, 11: 151–174CrossRefGoogle Scholar
  28. 28.
    Zhang L, Feng Q, Wang J, Sun J, Shi X, Jiang X. Angew Chem Int Ed, 2015, 54: 3952–3956CrossRefGoogle Scholar
  29. 29.
    Feng Q, Liu J, Li X, Chen Q, Sun J, Shi X, Ding B, Yu H, Li Y, Jiang X. Small, 2017, 13: 1603109CrossRefGoogle Scholar
  30. 30.
    Wang J, Sun L, Zou M, Gao W, Liu C, Shang L, Gu Z, Zhao Y. Sci Adv, 2017, 3: e1700004Google Scholar
  31. 31.
    Keidel R, Ghavami A, Lugo DM, Lotze G, Virtanen O, Beumers P, Pedersen JS, Bardow A, Winkler RG, Richtering W. Sci Adv, 2018, 4: eaao7086Google Scholar
  32. 32.
    Kim B, Soo Lee H, Kim J, Kim SH. Chem Commun, 2013, 49: 1865–1867CrossRefGoogle Scholar
  33. 33.
    Gholampour N, Chaemchuen S, Hu ZY, Mousavi B, Van Tendeloo G, Verpoort F. Chem Eng J, 2017, 322: 702–709CrossRefGoogle Scholar
  34. 34.
    Leong TSH, Martin GJO, Ashokkumar M. Ultrasons Sonochem, 2017, 35: 605–614CrossRefGoogle Scholar
  35. 35.
    Galvão KCS, Vicente AA, Sobral PJA. Food Bioprocess Technol, 2018, 11: 355–367CrossRefGoogle Scholar
  36. 36.
    Dowding PJ, Atkin R, Vincent B, Bouillot P. Langmuir, 2005, 21: 5278–5284CrossRefGoogle Scholar
  37. 37.
    Hong Y, Gao C, Shi Y, Shen J. Polym Adv Technol, 2005, 16: 622–627CrossRefGoogle Scholar
  38. 38.
    Wang J, Chen W, Sun J, Liu C, Yin Q, Zhang L, Xianyu Y, Shi X, Hu G, Jiang X. Lab Chip, 2014, 14: 1673–1677CrossRefGoogle Scholar
  39. 39.
    Yu Y, Shang L, Gao W, Zhao Z, Wang H, Zhao Y. Angew Chem Int Ed, 2017, 56: 12127–12131CrossRefGoogle Scholar
  40. 40.
    Shang L, Fu F, Cheng Y, Wang H, Liu Y, Zhao Y, Gu Z. J Am Chem Soc, 2015, 137: 15533–15539CrossRefGoogle Scholar
  41. 41.
    Liu Y, Huang Q, Wang J, Fu F, Ren J, Zhao Y. Sci Bull, 2017, 62: 1283–1290CrossRefGoogle Scholar
  42. 42.
    Wang R, Zhou L, Wang W, Li X, Zhang F. Nat Commun, 2017, 8: 14702CrossRefGoogle Scholar
  43. 43.
    Li Y, Yan D, Fu F, Liu Y, Zhang B, Wang J, Shang L, Gu Z, Zhao Y. Sci China Mater, 2017, 60: 543–553CrossRefGoogle Scholar
  44. 44.
    Deng W, Li J, Yao P, He F, Huang C. Macromol Biosci, 2010, 10: 1224–1234CrossRefGoogle Scholar
  45. 45.
    Feng Q, Sun J, Jiang X. Nanoscale, 2016, 8: 12430–12443CrossRefGoogle Scholar
  46. 46.
    Chen H, Ma Y, Wang X, Wu X, Zha Z. RSC Adv, 2017, 7: 248–255CrossRefGoogle Scholar
  47. 47.
    Huang C, Yang G, Ha Q, Meng J, Wang S. Adv Mater, 2015, 27: 310–313CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Han Zhang
    • 1
  • Yuxiao Liu
    • 1
  • Jie Wang
    • 1
  • Changmin Shao
    • 1
  • Yuanjin Zhao
    • 1
    Email author
  1. 1.State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations