Science China Chemistry

, Volume 62, Issue 1, pp 14–23 | Cite as

Bioinspired membranes for multi-phase liquid and molecule separation

  • Jingchong Liu
  • Zhimin Cui
  • Lanlan Hou
  • Dianming Li
  • Yuan Gao
  • Li Shuai
  • Jing Liu
  • Jian Jin
  • Nü WangEmail author
  • Yong ZhaoEmail author
Mini Reviews


Water pollution is a serious problem around the world. It causes the lack of clean drinking water and brings risks to human health. Membrane technology has become a competitive candidate to treat the contaminated wastewater due to its high separation efficiency and low energy consumption. In this review, we introduce the recent development of several kinds of bioinspired separation membranes, involving the membrane design and applications. We emphasize the multi-phase liquid separation membranes inspired from nature with special wettability applied for oil/water separation, organic liquids mixture separation, and emulsion separation. After separating multi-phase liquids using these membranes, small molecule pollutants still exist in single-phase liquid. Therefore, we also expand the scope to small molecule-scale separation membranes, such as the nacre-like graphene oxide separation membrane and other nanofiltration membranes. Summary and outlook concerning the future development of separation membranes are also introduced briefly.


bioinspired superhydrophobic superwettability nanofibers separation membrane 



This work was supported by the National Natural Science Foundation of China (21433012, 21774005, 21374001, 21503005, 51772010), the National Instrumentation Program (2013YQ120355), the Program for New Century Excellent Talents in University of China, the Fundamental Research Funds for the Central Universities, the National Program for Support of Top-notch Young Professionals and the Program of Introducing Talents of Discipline to Universities of China (B14009).


  1. 1.
    Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD. Science, 2017, 356: eaab0530CrossRefGoogle Scholar
  2. 2.
    Dubansky B, Whitehead A, Miller JT, Rice CD, Galvez F. Environ Sci Technol, 2013, 47: 5074–5082CrossRefGoogle Scholar
  3. 3.
    Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. ACS Appl Mater Interfaces, 2012, 4: 3207–3212CrossRefGoogle Scholar
  4. 4.
    Zhang S, Jiang G, Gao S, Jin H, Zhu Y, Zhang F, Jin J. ACS Nano, 2018, 12: 795–803CrossRefGoogle Scholar
  5. 5.
    Hou L, Wang N, Wu J, Cui Z, Jiang L, Zhao Y. Adv Funct Mater, 2018, 2: 1801114CrossRefGoogle Scholar
  6. 6.
    Jin X, Yang S, Li Z, Liu KS, Jiang L. Sci China Chem, 2012, 55: 2327–2333CrossRefGoogle Scholar
  7. 7.
    Wenzel RN. Ind Eng Chem, 1936, 28: 988–994CrossRefGoogle Scholar
  8. 8.
    Jiang L, Zhao Y, Zhai J. Angew Chem, 2004, 116: 4438–4441CrossRefGoogle Scholar
  9. 9.
    Wu J, Wang N, Zhang H, Wang L, Dong H, Zhao Y, Jiang L. J Mater Chem A, 2013, 1: 4642–4646CrossRefGoogle Scholar
  10. 10.
    Liu M, Jiang L. Sci China Mater, 2016, 59: 239–246CrossRefGoogle Scholar
  11. 11.
    Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. Soft Matter, 2012, 8: 5996–5999CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Chen Y, Hou L, Guo F, Liu J, Qiu S, Xu Y, Wang N, Zhao Y. J Mater Chem A, 2017, 5: 16134–16138CrossRefGoogle Scholar
  13. 13.
    Hou L, Wang L, Wang N, Guo F, Liu J, Chen Y, Liu J, Zhao Y, Jiang L. NPG Asia Mater, 2016, 8: e334CrossRefGoogle Scholar
  14. 14.
    Tian Y, Su B, Jiang L. Adv Mater, 2014, 26: 6872–6897CrossRefGoogle Scholar
  15. 15.
    Li J, Li D, Yang Y, Li J, Zha F, Lei Z. Green Chem, 2016, 18: 541–549CrossRefGoogle Scholar
  16. 16.
    Chu Z, Feng Y, Seeger S. Angew Chem Int Ed, 2015, 54: 2328–2338CrossRefGoogle Scholar
  17. 17.
    Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A. Nat Commun, 2012, 3: 1025CrossRefGoogle Scholar
  18. 18.
    Zhu Y, Wang D, Jiang L, Jin J. NPG Asia Mater, 2014, 6: e101CrossRefGoogle Scholar
  19. 19.
    Hilal N, Al-Zoubi H, Darwish NA, Mohamma AW, Abu Arabi M. Desalination, 2004, 170: 281–308CrossRefGoogle Scholar
  20. 20.
    Neinhuis C, Barthlott W. Ann Bot, 1997, 79: 667–677CrossRefGoogle Scholar
  21. 21.
    Barthlott W, Neinhuis C. Planta, 1997, 202: 1–8CrossRefGoogle Scholar
  22. 22.
    Liu K, Yao X, Jiang L. Chem Soc Rev, 2010, 39: 3240–3255CrossRefGoogle Scholar
  23. 23.
    Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D. Angew Chem Int Ed, 2004, 43: 2012–2014CrossRefGoogle Scholar
  24. 24.
    Li X, Wang M, Wang C, Cheng C, Wang X. ACS Appl Mater Interfaces, 2014, 6: 15272–15282CrossRefGoogle Scholar
  25. 25.
    Zhu Q, Pan Q. ACS Nano, 2014, 8: 1402–1409CrossRefGoogle Scholar
  26. 26.
    Kwon G, Kota AK, Li Y, Sohani A, Mabry JM, Tuteja A. Adv Mater, 2012, 24: 3666–3671CrossRefGoogle Scholar
  27. 27.
    Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T. Adv Mater, 2012, 24: 2409–2412CrossRefGoogle Scholar
  28. 28.
    Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K. Angew Chem Int Ed, 2013, 52: 1986–1989CrossRefGoogle Scholar
  29. 29.
    Liu J, Wang L, Guo F, Hou L, Chen Y, Liu J, Wang N, Zhao Y, Jiang L. J Mater Chem A, 2016, 4: 4365–4370CrossRefGoogle Scholar
  30. 30.
    Lu Y, Sathasivam S, Song J, Chen F, Xu W, Carmalt CJ, Parkin IP. J Mater Chem A, 2014, 2: 11628–11634CrossRefGoogle Scholar
  31. 31.
    Dong Y, Li J, Shi L, Wang X, Guo Z, Liu W. Chem Commun, 2014, 50: 5586–5589CrossRefGoogle Scholar
  32. 32.
    Li L, Liu Z, Zhang Q, Meng C, Zhang T, Zhai J. J Mater Chem A, 2015, 3: 1279–1286CrossRefGoogle Scholar
  33. 33.
    Lin L, Yi H, Guo X, Zhang P, Chen L, Hao D, Wang S, Liu M, Jiang L. Sci China Chem, 2018, 61: 64–70CrossRefGoogle Scholar
  34. 34.
    Chen PC, Xu ZK. Sci Rep, 2013, 3: 2776CrossRefGoogle Scholar
  35. 35.
    Zhang L, Zhong Y, Cha D, Wang P. Sci Rep, 2013, 3: 2326CrossRefGoogle Scholar
  36. 36.
    Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L. Adv Mater, 2011, 23: 4270–4273CrossRefGoogle Scholar
  37. 37.
    Gao X, Xu LP, Xue Z, Feng L, Peng J, Wen Y, Wang S, Zhang X. Adv Mater, 2014, 26: 1771–1775CrossRefGoogle Scholar
  38. 38.
    Gao S, Sun J, Liu P, Zhang F, Zhang W, Yuan S, Li J, Jin J. Adv Mater, 2016, 28: 5307–5314CrossRefGoogle Scholar
  39. 39.
    Dunderdale GJ, Urata C, Sato T, England MW, Hozumi A. ACS Appl Mater Interfaces, 2015, 7: 18915–18919CrossRefGoogle Scholar
  40. 40.
    Ge J, Ye YD, Yao HB, Zhu X, Wang X, Wu L, Wang JL, Ding H, Yong N, He LH, Yu SH. Angew Chem, 2014, 126: 3686–3690CrossRefGoogle Scholar
  41. 41.
    Wang Z, Xu Y, Liu Y, Shao L. J Mater Chem A, 2015, 3: 12171–12178CrossRefGoogle Scholar
  42. 42.
    Qiu S, Hou L, Liu J, Guo F, Zhang Y, Zhang L, Liu K, Wang N, Zhao Y. RSC Adv, 2017, 7: 19434–19438CrossRefGoogle Scholar
  43. 43.
    Zhang W, Liu N, Cao Y, Lin X, Liu Y, Feng L. Adv Mater Interfaces, 2017, 4: 1600029CrossRefGoogle Scholar
  44. 44.
    Rana D, Matsuura T. Chem Rev, 2010, 110: 2448–2471CrossRefGoogle Scholar
  45. 45.
    Lee S, Aurelle Y, Roques H. J Membr Sci, 1984, 19: 23–38CrossRefGoogle Scholar
  46. 46.
    Fan JB, Song Y, Wang S, Meng J, Yang G, Guo X, Feng L, Jiang L. Adv Funct Mater, 2015, 25: 5368–5375CrossRefGoogle Scholar
  47. 47.
    Tao M, Xue L, Liu F, Jiang L. Adv Mater, 2014, 26: 2943–2948CrossRefGoogle Scholar
  48. 48.
    Liu D, He L, Lei W, Klika KD, Kong L, Chen Y. Adv Mater Interfaces, 2015, 2: 1500228CrossRefGoogle Scholar
  49. 49.
    Liu N, Zhang M, Zhang W, Cao Y, Chen Y, Lin X, Xu L, Li C, Feng L, Wei Y. J Mater Chem A, 2015, 3: 20113–20117CrossRefGoogle Scholar
  50. 50.
    Si Y, Yu J, Tang X, Ge J, Ding B. Nat Commun, 2014, 5: 5802CrossRefGoogle Scholar
  51. 51.
    Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Adv Mater, 2013, 25: 2071–2076CrossRefGoogle Scholar
  52. 52.
    Chen Y, Wang N, Guo F, Hou L, Liu J, Liu J, Xu Y, Zhao Y, Jiang L. J Mater Chem A, 2016, 4: 12014–12019CrossRefGoogle Scholar
  53. 53.
    Wang L, Zhao Y, Tian Y, Jiang L. Angew Chem Int Ed, 2015, 54: 14732–14737CrossRefGoogle Scholar
  54. 54.
    Qiu M, Wang N, Cui Z, Liu J, Hou L, Liu J, Hu R, Zhang H, Zhao Y. J Mater Chem A, 2017, 6: 817–822CrossRefGoogle Scholar
  55. 55.
    Liu J, Wang L, Wang N, Guo F, Hou L, Chen Y, Liu J, Zhao Y, Jiang L. Small, 2017, 13: 1600499CrossRefGoogle Scholar
  56. 56.
    Wang Y, Di J, Wang L, Li X, Wang N, Wang B, Tian Y, Jiang L, Yu J. Nat Commun, 2017, 8: 575CrossRefGoogle Scholar
  57. 57.
    Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM. Nature, 2008, 452: 301–310CrossRefGoogle Scholar
  58. 58.
    Montgomery MA, Elimelech M. Environ Sci Technol, 2007, 41: 17–24CrossRefGoogle Scholar
  59. 59.
    Bolisetty S, Mezzenga R. Nat Nanotech, 2016, 11: 365–371CrossRefGoogle Scholar
  60. 60.
    Gao SJ, Qin H, Liu P, Jin J. J Mater Chem A, 2015, 3: 6649–6654CrossRefGoogle Scholar
  61. 61.
    Hong S, Elimelech M. J Membrane Sci, 1997, 132: 159–181CrossRefGoogle Scholar
  62. 62.
    Tan Z, Chen S, Peng X, Zhang L, Gao C. Science, 2018, 360: 518–521CrossRefGoogle Scholar
  63. 63.
    Wang Z, Wang Z, Lin S, Jin H, Gao S, Zhu Y, Jin J. Nat Commun, 2018, 9: 2004CrossRefGoogle Scholar
  64. 64.
    Ulbricht M. Polymer, 2006, 47: 2217–2262CrossRefGoogle Scholar
  65. 65.
    Kidambi PR, Jang D, Idrobo JC, Boutilier MSH, Wang L, Kong J, Karnik R. Adv Mater, 2017, 29: 1700277CrossRefGoogle Scholar
  66. 66.
    Suk ME, Aluru NR. J Phys Chem Lett, 2010, 1: 1590–1594CrossRefGoogle Scholar
  67. 67.
    Koenig SP, Wang L, Pellegrino J, Bunch JS. Nat Nanotech, 2012, 7: 728–732CrossRefGoogle Scholar
  68. 68.
    Wang L, Drahushuk LW, Cantley L, Koenig SP, Liu X, Pellegrino J, Strano MS, Scott Bunch J. Nat Nanotech, 2015, 10: 785–790CrossRefGoogle Scholar
  69. 69.
    Peng J, Cheng Q. Adv Mater, 2017, 29: 1702959CrossRefGoogle Scholar
  70. 70.
    Liang B, Zhan W, Qi G, Lin S, Nan Q, Liu Y, Cao B, Pan K. J Mater Chem A, 2015, 3: 5140–5147CrossRefGoogle Scholar
  71. 71.
    Liang B, Zhang P, Wang J, Qu J, Wang L, Wang X, Guan C, Pan K. Carbon, 2016, 103: 94–100CrossRefGoogle Scholar
  72. 72.
    Hu R, Zhu H. Sci China Mater, 2018, 61: 429–431CrossRefGoogle Scholar
  73. 73.
    Qiu L, Zhang X, Yang W, Wang Y, Simon GP, Li D. Chem Commun, 2011, 47: 5810–5812CrossRefGoogle Scholar
  74. 74.
    Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR. Science, 2014, 343: 752–754CrossRefGoogle Scholar
  75. 75.
    Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT, Dix J, Prestat E, Haigh SJ, Grigorieva IV, Carbone P, Geim AK, Nair RR. Nat Nanotech, 2017, 12: 546–550CrossRefGoogle Scholar
  76. 76.
    Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X. Nat Commun, 2013, 4: 2979CrossRefGoogle Scholar
  77. 77.
    Sun L, Ying Y, Huang H, Song Z, Mao Y, Xu Z, Peng X. ACS Nano, 2014, 8: 6304–6311CrossRefGoogle Scholar
  78. 78.
    Wang Z, Knebel A, Grosjean S, Wagner D, Bräse S, Wöll C, Caro J, Heinke L. Nat Commun, 2016, 7: 13872CrossRefGoogle Scholar
  79. 79.
    Wang Y, Chen S, Qiu L, Wang K, Wang H, Simon GP, Li D. Adv Funct Mater, 2015, 25: 126–133CrossRefGoogle Scholar
  80. 80.
    Liu J, Wang N, Yu LJ, Karton A, Li W, Zhang W, Guo F, Hou L, Cheng Q, Jiang L, Weitz DA, Zhao Y. Nat Commun, 2017, 8: 2011CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jingchong Liu
    • 1
  • Zhimin Cui
    • 1
  • Lanlan Hou
    • 1
  • Dianming Li
    • 1
  • Yuan Gao
    • 1
  • Li Shuai
    • 1
  • Jing Liu
    • 1
  • Jian Jin
    • 2
  • Nü Wang
    • 1
    Email author
  • Yong Zhao
    • 1
    Email author
  1. 1.Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of Chemistry, Beijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
  2. 2.i-Lab, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina

Personalised recommendations