Science China Chemistry

, Volume 61, Issue 12, pp 1553–1567 | Cite as

Biomineralized polymer matrix composites for bone tissue repair: a review

  • Lin Zhong
  • Ying Qu
  • Kun Shi
  • Bingyang Chu
  • Minyi Lei
  • Kangkang Huang
  • Yingchun GuEmail author
  • Zhiyong QianEmail author


Bone defects caused by trauma, infection or bone tumor resection, are highly prevalent. A small number (5%–10%) of these injuries fail to heal due to non-union and require surgical intervention. Currently, the principal treatment options for these defects are autografts, allografts, xenografts or synthetic grafts. The main problems associated with these therapies include pain, infection and donor site morbidity. Bone tissue engineering is a diverse field that focuses on the regeneration of bone by combining cells, scaffolds, growth factors and dynamic forces. There have been many recent studies utilizing biomineralized polymer matrix composites which mimic the natural structure of bone. The principal focus of this review is on recent advances in the synthesis of various types of biomineralized polymer matrix composite. Examples of the biomineralization of naturallyderived and synthetic polymers widely used for bone engineering are also summarized.


bomineralization natural-based materials synthetic polymers bone engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (2017YFC1103500, 2017YFC1103502), the National Natural Science Foundation of China (31525009), Sichuan Innovative Research Team Program for Young Scientists (2016TD0004), Distinguished Young Scholars of Sichuan University (2011SCU04B18), and Sichuan Science and Technology Project (2017GZ0429).


  1. 1.
    Zhang C, Mcadam Ii DA, Grunlan JC. Adv Mater, 2016, 28: 8566Google Scholar
  2. 2.
    Gkioni K, Leeuwenburgh SCG, Douglas TEL, Mikos AG, Jansen JA. Tissue Eng Part B-Rev, 2010, 16: 577–585Google Scholar
  3. 3.
    Cui FZ, Li Y, Ge J. Mater Sci Eng-R-Rep, 2007, 57: 1–27Google Scholar
  4. 4.
    Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Nat Biotechnol, 2000, 18: 959–963Google Scholar
  5. 5.
    Fu SZ, Ni PY, Wang BY, Chu BY, Zheng L, Luo F, Luo JC, Qian ZY. Biomaterials, 2012, 33: 4801–4809Google Scholar
  6. 6.
    Wei JQ, Liu Y, Zhang XH, Liang WW, Zhou TF, Zhang H, Deng XL. Chin Chem Lett, 2017, 28: 845–850Google Scholar
  7. 7.
    Qu Y, Wang BY, Chu BY, Liu CL, Rong X, Chen H, Peng JR, Qian ZY. ACS Appl Mater Interfaces, 2018, 10: 4462–4470Google Scholar
  8. 8.
    Niederauer GG, Lee DR, Sankaran S. Sports Med Arthrosc Rev, 2006, 14: 163–168Google Scholar
  9. 9.
    Zhou T, Li G, Lin S, Shi S, Liao J, Tian T, Huang Q, Lin Y. Biomed Nanotechnol, 2017, 13: 822–834Google Scholar
  10. 10.
    Fu SZ, Ni PY, Wang BY, Chu BY, Peng JR, Zheng L, Zhao X, Luo F, Wei YQ, Qian ZY. Biomaterials, 2012, 33: 8363–8371Google Scholar
  11. 11.
    Zhang Z, Fu Y, Yu W, Qin X, Xue Z, Liu Y, Luo D, Yan C, Sun X, Wang T. Adv Mater, 2016, 28: 9589–9595Google Scholar
  12. 12.
    Yang M, Wang J, Zhu Y, Mao C. Biomed Nanotechnol, 2016, 12: 753–761Google Scholar
  13. 13.
    Boskey AL. Calcified Tissue Int, 2003, 72: 533–536Google Scholar
  14. 14.
    Deng Y, Sun Y, Bai Y, Gao X, Zhang H, Xu A, Huang E, Deng F, Wei S. Biomed Nanotechnol, 2016, 12: 602–618Google Scholar
  15. 15.
    Park H, Lim DJ, Lee SH, Park H. Biomed Nanotechnol, 2016, 12: 2076–2082Google Scholar
  16. 16.
    Huang C, Zhou Y, Tang Z, Guo X, Qian Z, Zhou S. Dalton Trans, 2011, 40: 5026–5031Google Scholar
  17. 17.
    Yu Y, Ren S, Yao Y, Zhang H, Liu C, Yang J, Yang W, Miao L. Biomed Nanotechnol, 2017, 13: 835–847Google Scholar
  18. 18.
    Meyers MA, Chen PY, Lin AYM, Seki Y. Prog Mater Sci, 2008, 53: 1–206Google Scholar
  19. 19.
    Wilcock CJ, Stafford GP, Miller CA, Ryabenkova Y, Fatima M, Gentile P, Möbus G, Hatton PV. Biomed Nanotechnol, 2017, 13: 1168–1176Google Scholar
  20. 20.
    Zhao C, Wu H, Ni J, Zhang S, Zhang X. Compos Sci Tech, 2017, 147: 8–15Google Scholar
  21. 21.
    Datta P, Chatterjee J, Dhara S. Colloid Surface B, 2012, 94: 177–183Google Scholar
  22. 22.
    Cai Y, Yao J. Nanoscale, 2010, 2: 1842–1848Google Scholar
  23. 23.
    Nair AK, Gautieri A, Chang SW, Buehler MJ. Na. Commun, 2013, 4: 1724Google Scholar
  24. 24.
    Liu Y, Luo D, Wang T. Small, 2016, 12: 4611–4632Google Scholar
  25. 25.
    Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Polyme Degrad Stabil, 2010, 95: 2126–2146Google Scholar
  26. 26.
    George A, Ravindran S. Nano Today, 2010, 5: 254–266Google Scholar
  27. 27.
    Zhang Y, Sun T, Jiang C. Acta Pharm Sin B, 2018, 8: 34–50Google Scholar
  28. 28.
    Yin GZ, Zhang WB, Cheng SZD. Sci China Chem, 2017, 60: 338–352Google Scholar
  29. 29.
    Patel KD, Singh RK, Mahapatra C, Lee EJ, Kim HW. Biomed Nanotechnol, 2016, 12: 1876–1889Google Scholar
  30. 30.
    Hsu S, Hung KC, Chen CW. Mater Chem B, 2016, 4: 7493–7505Google Scholar
  31. 31.
    Eglin D, Alini M. Eur Cells Mater, 2008, 16: 80–91Google Scholar
  32. 32.
    Letellier SR, Lochhead MJ, Campbell AA, Vogel V. Biochim Biophysica Acta-Gen Subjects, 1998, 1380: 31–45Google Scholar
  33. 33.
    Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R. Ad. Mater, 2017, 29: 1605903Google Scholar
  34. 34.
    Sankar D, Shalumon KT, Chennazhi KP, Menon D, Jayakumar R. Tissue Eng Part A, 2014, 20: 1689–1702Google Scholar
  35. 35.
    Nishimura S, Kohgo O, Kurita K, Kuzuhara H. Macromolecules, 1991, 24: 4745–4748Google Scholar
  36. 36.
    Ehrlich H, Krajewska B, Hanke T, Born R, Heinemann S, Knieb C, Worch H. Membrane Sci, 2006, 273: 124–128Google Scholar
  37. 37.
    Ma Q, Liao J, Tian T, Zhang Q, Cai X. Chin Chem Lett, 2017, 28: 1893–1896Google Scholar
  38. 38.
    Raja Unnithan A, Ramachandra Kurup Sasikala A, Park CH, Kim CS. J Ind Eng Chem, 2017, 46: 182–191Google Scholar
  39. 39.
    Zhang Y, Reddy VJ, Wong SY, Li X, Su B, Ramakrishna S, Lim CT. Tissue Eng Part A, 2010, 16: 1949–1960Google Scholar
  40. 40.
    Pangon A, Saesoo S, Saengkrit N, Ruktanonchai U, Intasanta V. Carbohyd Polym, 2016, 144: 419–427Google Scholar
  41. 41.
    Thein-Han WW, Misra RDK. Acta Biomater, 2009, 5: 1182–1197Google Scholar
  42. 42.
    Liu Y, Shen X, Zhou H, Wang Y, Deng L. Appl Surf Sci, 2016, 370: 270–278Google Scholar
  43. 43.
    Dash M, Samal SK, Douglas TEL, Schaubroeck D, Leeuwenburgh SC, Van Der Voort P, Declercq HA, Dubruel P. J Tissue Eng Regen Med, 2017, 11: 1500–1513Google Scholar
  44. 44.
    Xu Z, Neoh KG, Lin CC, Kishen A. J Biomed Mater Res, 2011, 98B: 150–159Google Scholar
  45. 45.
    Furuya DC, Costa SA, Oliveira RC, Ferraz HG, Pesso. Junior A, Costa SM. Mat Res, 2017, 20: 377–386Google Scholar
  46. 46.
    DMartino A, Sittinger M, Risbud MV. Biomaterials, 2005, 26: 5983–5990Google Scholar
  47. 47.
    Li ZW, Li CW, Wang Q, Shi SJ, Hu M, Zhang Q, Cui HH, Sun JB, Zhou M, Wu GL, Dang JZ, Lu LC. Biomed Nanotechnol, 2017, 13: 17–34Google Scholar
  48. 48.
    Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Biomaterials, 2005, 26: 3919–3928Google Scholar
  49. 49.
    Liang H, Sheng F, Zhou B, Pei Y, Li B, Li J. Int J Biol Macromol, 2017, 102: 218–224Google Scholar
  50. 50.
    Sun Y, Liu S, Fu Y, Kou XX, He DQ, Wang GN, Fu CC, Liu Y, Zhou YH. Biomed Nanotechnol, 2016, 12: 2029–2040Google Scholar
  51. 51.
    Zhao X, Song W, Liu S, Ren L. Sci China Chem, 2016, 59: 1548–1553Google Scholar
  52. 52.
    Huang Z, Cui F, Feng Q, Guo X. Ceram Int, 2015, 41: 8773–8778Google Scholar
  53. 53.
    He M, Zhang Y, Munyemana JC, Wu T, Yang Z, Chen H, Qu W, Xiao J. Mater Chem B, 2017, 5: 1423–1429Google Scholar
  54. 54.
    Cölfen H. Nat Mater, 2010, 9: 960–961Google Scholar
  55. 55.
    Chai YC, Carlier A, Bolander J, Roberts SJ, Geris L, Schrooten J, Van Oosterwyck H, Luyten FP. Acta Biomater, 2012, 8: 3876–3887Google Scholar
  56. 56.
    Golub EE. Biochim Biophysica Acta-Gen Subjects, 2009, 1790: 1592–1598Google Scholar
  57. 57.
    Zhou B, Niu LN, Shi W, Zhang W, Arola DD, Breschi L, Mao J, Chen JH, Pashley DH, Tay FR. Adv Funct Mater, 2014, 24: 1895–1903Google Scholar
  58. 58.
    Miyazaki T, Kuramoto A, Hirakawa A, Shirosaki Y, Ohtsuki C. Dent Mater J, 2013, 32: 544–549Google Scholar
  59. 59.
    Zhao H, Jin H, Cai J, Ding S. Ultramicroscopy, 2010, 110: 1306–1311Google Scholar
  60. 60.
    Liu Y, Liu S, Luo D, Xue Z, Yang X, Gu L, Zhou Y, Wang T. Adv Mater, 2016, 28: 8740–8748Google Scholar
  61. 61.
    Habibovic P, Bassett DC, Doillon CJ, Gerard C, McKee MD, Barralet JE. Adv Mater, 2010, 22: 1858–1862Google Scholar
  62. 62.
    Price PA, Toroian D, Chan WS. Biol Chem, 2009, 284: 4594–4604Google Scholar
  63. 63.
    Cui FZ, Wang Y, Cai Q, Zhang W. Mater Chem, 2008, 18: 3835–3840Google Scholar
  64. 64.
    Coombes AGA, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA. Biomaterials, 2004, 25: 315–325Google Scholar
  65. 65.
    Li X, Cheng R, Sun Z, Su W, Pan G, Zhao S, Zhao J, Cui W. Acta Biomater, 2017, 61: 204–216Google Scholar
  66. 66.
    Qi A, Deng L, Liu X, Wang S, Zhang X, Wang B, Li L. Biomed Nanotechnol, 2017, 13: 1386–1397Google Scholar
  67. 67.
    Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW. Bone Mineral, 1993, 22: 147–159Google Scholar
  68. 68.
    Ethirajan A, Ziener U, Chuvilin A, Kaiser U, Cölfen H, Landfester K. Adv Funct Mater, 2008, 18: 2221–2227Google Scholar
  69. 69.
    Busch S, Schwarz U, Kniep R. Adv Funct Mater, 2003, 13: 189–198Google Scholar
  70. 70.
    Saravanan S, Chawla A, Vairamani M, Sastry TP, Subramanian KS, Selvamurugan N. Int J Biol Macromol, 2017, 104: 1975–1985Google Scholar
  71. 71.
    Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sørensen ES, Boskey AL. Calcif Tissue Int, 2005, 77: 45–54Google Scholar
  72. 72.
    Guo Y, Lan J, Zhang C, Cao M, Cai Q, Yang X. Appl Surf Sci, 2015, 349: 538–548Google Scholar
  73. 73.
    Diba M, Camargo WA, Brindisi M, Farbod K, Klymov A, Schmidt S, Harrington MJ, Draghi L, Boccaccini AR, Jansen JA, van den Beucken JJJP, Leeuwenburgh SCG. Adv Funct Mater, 2017, 27: 1703438Google Scholar
  74. 74.
    Deng Y, Zhao X, Zhou Y, Zhu P, Zhang L, Wei S. J Biomed Nanotechnol, 2013, 9: 1972–1983Google Scholar
  75. 75.
    Cai Q, Feng Q, Liu H, Yang X. Mater Lett, 2013, 91: 275–278Google Scholar
  76. 76.
    Pereira IHL, Ayres E, Averous L, Schlatter G, Hebraud A, de Paula ACC, Viana PHL, Goes AM, Oréfice RL. J Mater Sci-Mater Med, 2014, 25: 1137–1148Google Scholar
  77. 77.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Biomaterials, 2003, 24: 401–416Google Scholar
  78. 78.
    Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Biomaterials, 2004, 25: 1289–1297Google Scholar
  79. 79.
    Zhao J, Zhang Z, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Jiang X. Bone, 2009, 45: 517–527Google Scholar
  80. 80.
    Zhang X, Fan Z, Lu Q, Huang Y, Kaplan DL, Zhu H. Acta Biomater, 2013, 9: 6974–6980Google Scholar
  81. 81.
    Dey A, Bomans PHH, Müller FA, Will J, Frederik PM, d. With G, Sommerdijk NAJM. Nat Mater, 2010, 9: 1010–1014Google Scholar
  82. 82.
    Singh BN, Pramanik K. Biofabrication, 2017, 9: 015028Google Scholar
  83. 83.
    Kim HJ, Kim UJ, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL. Bone, 2008, 42: 1226–1234Google Scholar
  84. 84.
    Türkkan S, Pazarçeviren AE, Keskin D, Machin NE, Duygulu Ö. Tezcaner A. Mater Sci Eng-C, 2017, 80: 484–493Google Scholar
  85. 85.
    Shao W, He J, Sang F, Wang Q, Chen L, Cui S, Ding B. Mater Sci Eng-C, 2016, 62: 823–834Google Scholar
  86. 86.
    Li C, Jin HJ, Botsaris GD, Kaplan DL. Mater Res, 2005, 20: 3374–3384Google Scholar
  87. 87.
    Huang J, Wong C, George A, Kaplan DL. Biomaterials, 2007, 28: 2358–2367Google Scholar
  88. 88.
    Hardy JG, Torres-Rendon JG, Leal-Egaña A, Walther A, Schlaad H, Cölfen H, Scheibel TR. Materials, 2016, 9: 560Google Scholar
  89. 89.
    Dinjaski N, Plowright R, Zhou S, Belton DJ, Perry CC, Kaplan DL. Acta Biomater, 2017, 49: 127–139Google Scholar
  90. 90.
    Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL. Soft Matter, 2011, 7: 4964–4973Google Scholar
  91. 91.
    Xu L, Anderson AL, Lu Q, Wang J. Biomaterials, 2007, 28: 750–761Google Scholar
  92. 92.
    Graf HL, Stoeva S, Armbruster FP, Neuhaus J, Hilbig H. Int J Oral Max Surg, 2008, 37: 634–640Google Scholar
  93. 93.
    Naik K, Chandran VG, Rajashekaran R, Waigaonkar S, Kowshik M. Biomater Appl, 2016, 31: 387–399Google Scholar
  94. 94.
    Schmidt CE, Baier JM. Biomaterials, 2000, 21: 2215–2231Google Scholar
  95. 95.
    Meng Y, Qin YX, DiMasi E, Ba X, Rafailovich M, Pernodet N. Tissue Eng Part A, 2009, 15: 355–366Google Scholar
  96. 96.
    Wang W, Miao Y, Zhou X, Nie W, Chen L, Liu D, Du H, He C. Biomed Nanotechnol, 2017, 13: 1446–1456Google Scholar
  97. 97.
    Ni PY, Fu SZ, Fan M, Guo G, Shi S, Peng JR, Luo F, Qian ZY. Int J Nanomed, 2011, 6: 3065–3075Google Scholar
  98. 98.
    Picker A, Kellermeier M, Seto J, Gebauer D, Cölfen H. Z fü. Kristallographie-Cryst Mater, 2012, 227: 744–757Google Scholar
  99. 99.
    Zhang R, Ma PX. Biomed Mater Res, 1999, 45: 285–293Google Scholar
  100. 100.
    Shi X, Jiang J, Sun L, Gan Z. Colloid Surface B, 2011, 85: 73–80Google Scholar
  101. 101.
    Zhang Q, Mochalin VN, Neitzel I, Hazeli K, Niu J, Kontsos A, Zhou JG, Lelkes PI, Gogotsi Y. Biomaterials, 2012, 33: 5067–5075Google Scholar
  102. 102.
    Mahjoubi H, Kinsella JM, Murshed M, Cerruti M. AC. Appl Mater Interfaces, 2014, 6: 9975–9987Google Scholar
  103. 103.
    Murphy WL, Mooney DJ. Am Chem Soc, 2002, 124: 1910–1917Google Scholar
  104. 104.
    Wang B, Liu C, Qu Y, Peng J, Chu B, Wu T, Huang K, Qian Z. Nanosci Nanotechnol Lett, 2017, 9: 1781–1785Google Scholar
  105. 105.
    Zhou R, Xu W, Chen F, Qi C, Lu BQ, Zhang H, Wu J, Qian QR, Zhu YJ. Colloid Surface B, 2014, 123: 236–245Google Scholar
  106. 106.
    Zhang H, Fu QW, Sun TW, Chen F, Qi C, Wu J, Cai ZY, Qian QR, Zhu YJ. Colloid Surface B, 2015, 136: 27–36Google Scholar
  107. 107.
    Karaman O, Kumar A, Moeinzadeh S, He X, Cui T, Jabbari E. J Tissue Eng Regen Med, 2016, 10: E132–E146Google Scholar
  108. 108.
    Chae T, Yang H, Ko F, Troczynski T. Biomed Mater Res, 2014, 102: 514–522Google Scholar
  109. 109.
    Liu C, Chan KW, Shen J, Wong HM, Kwo Yeung KW, Tjong SC. RSC Adv, 2015, 5: 72288–72299Google Scholar
  110. 110.
    Candela T, Fouet A. Mol Microbiol, 2006, 60: 1091–1098Google Scholar
  111. 111.
    Sugino A, Miyazaki T, Ohtsuki C. Mater Sci-Mater Med, 2008, 19: 2269–2274Google Scholar
  112. 112.
    Park SB, Hasegawa U, van den Vlies AJ, Sung MH, Uyama H. J BioMater Sci Polymer Ed, 2014, 25: 1875–1890Google Scholar
  113. 113.
    Ahn J, Jeong J, Lee H, Sung MJ, Jung CH, Lee H, Hur J, Park JH, Jang YJ, Ha TY. Biomed Nanotechnol, 2017, 13: 688–698Google Scholar
  114. 114.
    Zhu Y, Li D, Zhang K, Jiang L, Shi C, Fangteng J, Zheng C, Yang B, Sun H. Biomed Nanotechnol, 2017, 13: 437–446Google Scholar
  115. 115.
    Sun F, Shi T, Zhou T, Dong D, Xie J, Wang R, An X, Chen M, Cai J. Biomed Nanotechnol, 2017, 13: 290–302Google Scholar
  116. 116.
    Shi X, Wang Y, Ren L, Zhao N, Gong Y, Wang DA. Acta Biomater, 2009, 5: 1697–1707Google Scholar
  117. 117.
    Ginebra MP, Traykova T, Planell JA. Control Release, 2006, 113: 102–110Google Scholar
  118. 118.
    Stigter M, Bezemer J, de Groot K, Layrolle P. J Control Release, 2004, 99: 127–137Google Scholar
  119. 119.
    Hild N, Schneider OD, Mohn D, Luechinger NA, Koehler FM, Hofmann S, Vetsch JR, Thimm BW, Müller R, Stark WJ. Nanoscale, 2011, 3: 401–409Google Scholar
  120. 120.
    Xu W, Wang L, Ling Y, Wei K, Zhong S. RS. Adv, 2014, 4: 13495–13501Google Scholar
  121. 121.
    Champ Jayasuriya A, Shah C, Ebraheim NA, Jayatissa AH. Biomed Mater, 2008, 3: 015003Google Scholar
  122. 122.
    Wang Z, Xu Y, Wang Y, Ito Y, Zhang P, Chen X. Biomacromolecules, 2016, 17: 818–829Google Scholar
  123. 123.
    Schneider OD, Loher S, Brunner TJ, Uebersax L, Simonet M, Grass RN, Merkle HP, Stark WJ. J Biomed Mater Res, 2008, 84B: 350–362Google Scholar
  124. 124.
    Liu W, Yeh YC, Lipner J, Xie J, Sung HW, Thomopoulos S, Xia Y. Langmuir, 2011, 27: 9088–9093Google Scholar
  125. 125.
    Zhang HL. Express Polym Lett, 2012, 6: 620–628Google Scholar
  126. 126.
    Luong LN, Hong SI, Patel RJ, Outslay ME, Kohn DH. Biomaterials, 2006, 27: 1175–1186Google Scholar
  127. 127.
    Luong LN, McFalls KM, Kohn DH. Biomaterials, 2010, 31: 1461–1462Google Scholar
  128. 128.
    Venkatesan J, Kim SK. Biomed Nanotechnol, 2014, 10: 3124–3140Google Scholar
  129. 129.
    Hu C, Chen Z, Wu S, Han Y, Wang H, Sun H, Kong D, Leng X, Wang C, Zhang L, Zhu D. Chin Chem Lett, 2017, 28: 1905–1909Google Scholar
  130. 130.
    Amirian J, Lee SY, Lee BT. Biomed Nanotechnol, 2016, 12: 1864–1875Google Scholar
  131. 131.
    Li X, Ghavide Mehr N, Guzmán-Morales J, Favis BD, De Crescenzo G, Yakandawala N, Hoemann CD. JBiomed Mater Res, 2017, 105: 2171–2181Google Scholar
  132. 132.
    Zhang H, Lin CY, Hollister SJ. Biomaterials, 2009, 30: 4063–4069Google Scholar
  133. 133.
    Mehr NG, Li X, Chen G, Favis BD, Hoemann CD. Biomed Mater Res, 2015, 103: 2449–2459Google Scholar
  134. 134.
    Xie J, Zhong S, Ma B, Shuler FD, Lim CT. Acta Biomater, 2013, 9: 5698–5707Google Scholar
  135. 135.
    Sampat Kumar TS, Perumal G, Doble M, Ramakrishna S. J Mater Process Tech, 2018, 252: 398–406Google Scholar
  136. 136.
    Chen J, Du Y, Que W, Xing Y, Lei B. {iRS. tAdv}, 2015, 5: 61309–61317Google Scholar
  137. 137.
    Hu Y, Gao H, Du Z, Liu Y, Yang Y, Wang C. Mater Chem B, 2015, 3: 3848–3857Google Scholar
  138. 138.
    Oyane A, Uchida M, Yokoyama Y, Choong C, Triffitt J, Ito A. J Biomed Mater Res, 2005, 75A: 138–145Google Scholar
  139. 139.
    Seregin VV, Coffer JL. Biomaterials, 2006, 27: 4745–4754Google Scholar
  140. 140.
    Cao Z, Wang D, Lyu L, Gong Y, Li Y. RS. Adv, 2016, 6: 10641–10649Google Scholar
  141. 141.
    Tiwari AP, Joshi MK, Lee J, Maharjan B, Ko SW, Park CH, Kim CS. Colloid Surface A, 2017, 520: 105–113Google Scholar
  142. 142.
    Ambre AH, Katti DR, Katti KS. Biomed Mater Res, 2015, 103: 2077–2101Google Scholar
  143. 143.
    Katti KS, Ambre AH, Payne S, Katti DR. Mate. Res Express, 2015, 2: 045401Google Scholar
  144. 144.
    Goonoo N, Khanbabaee B, Steuber M, Bhaw-Luximon A, Jonas U, Pietsch U, Jhurry D, Schönherr H. Biomacromolecules, 2017, 18: 1563–1573Google Scholar
  145. 145.
    Huang CP, Chen XM, Chen ZQ. Mater Lett, 2008, 62: 1499–1502Google Scholar
  146. 146.
    Li H, Chang J. Biomaterials, 2004, 25: 5473–5480Google Scholar
  147. 147.
    Gorna K, Gogolewski S. J Biomed Mater Res, 2006, 79A: 128–138Google Scholar
  148. 148.
    Solanki A, Das M, Thakore S. Carbohyd Polym, 2018, 181: 1003–1016Google Scholar
  149. 149.
    Lee SJ, Heo DN, Lee D, Heo M, Rim H, Zhang LG, Park SA, Do SH, Moon JH, Kwon IK. Biomed Nanotechnol, 2016, 12: 2041–2050Google Scholar
  150. 150.
    Yang W, Both SK, Zuo Y, Birgani ZT, Habibovic P, Li Y, Jansen JA, Yang F. Biomed Mater Res, 2015, 103: 2251–2259Google Scholar
  151. 151.
    Meskinfam M, Bertoldi S, Albanese N, Cerri A, Tanzi MC, Imani R, Baheiraei N, Farokhi M, Farè S. Mater Sci Eng-C, 2018, 82: 130–140Google Scholar
  152. 152.
    Zhu Q, Li X, Fan Z, Xu Y, Niu H, Li C, Dang Y, Huang Z, Wang Y, Guan J. Mater Sci Eng-C, 2018, 85: 79–87Google Scholar
  153. 153.
    Song EH, Cho KI, Kim HE, Jeong SH. AC Omega, 2017, 2: 981–987Google Scholar
  154. 154.
    Shrestha BK, Shrestha S, Tiwari AP, Kim JI, Ko SW, Kim HJ, Park CH, Kim CS. Mater Des, 2017, 133: 69–81Google Scholar
  155. 155.
    Selvakumar M, Pawar HS, Francis NK, Das B, Dhara S, Chattopadhyay S. AC. Appl Mater Interfaces, 2018, 10: 12068Google Scholar
  156. 156.
    Karamian E, Nasehi A, Saber-Samandari S, Khandan A. Nanomed J, 2017, 4: 177–183Google Scholar
  157. 157.
    Kajiyama S, Sakamoto T, Inoue M, Nishimura T, Yokoi T, Ohtsuki C, Kato T. CrystEngComm, 2016, 18: 8388–8395Google Scholar
  158. 158.
    Shrestha BK, Mousa HM, Tiwari AP, Ko SW, Park CH, Kim CS. Carbohyd Polym, 2016, 148: 107–114Google Scholar
  159. 159.
    Douglas TEL, Messersmith PB, Chasan S, Mikos AG, de Mulder ELW, Dickson G, Schaubroeck D, Balcaen L, Vanhaecke F, Dubruel P, Jansen JA, Leeuwenburgh SCG. Macromol Biosci, 2012, 12: 1077–1089Google Scholar
  160. 160.
    Talebian S, Mehrali M, Mohan S, Balaji raghavendran H, Mehrali M, Khanlou HM, Kamarul T, Afifi AM, Abbas AA. RS. Adv, 2015, 5: 5054Google Scholar
  161. 161.
    Zhao X, Wu Y, Du Y, Chen X, Lei B, Xue Y, Ma PX. J Mater Chem B, 2015, 3: 3222–3233Google Scholar
  162. 162.
    Kang T, Hua X, Liang P, Rao M, Wang Q, Quan C, Zhang C, Jiang Q. Compos Sci Tech, 2016, 123: 232–240Google Scholar
  163. 163.
    Zhang X, Kang T, Liang P, Tang Y, Quan C. Macromo. Biosci, 2018, 18: 1700331Google Scholar
  164. 164.
    Li X, Xue Z, Luo D, Huang C, Liu L, Qiao X, Liu C, Song Q, Yan C, Li Y, Wang T. Sci China Mater, 2018, 61: 363–370Google Scholar
  165. 165.
    Hu Q, Ji H, Liu Y, Zhang M, Xu X, Tang R. Biome. Mater, 2010, 5: 041001Google Scholar
  166. 166.
    Li X, Lan J, Ai M, Guo Y, Cai Q, Yang X. Colloid Surface B, 2014, 123: 753–761Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lin Zhong
    • 1
  • Ying Qu
    • 1
  • Kun Shi
    • 1
  • Bingyang Chu
    • 1
  • Minyi Lei
    • 1
  • Kangkang Huang
    • 1
  • Yingchun Gu
    • 2
    Email author
  • Zhiyong Qian
    • 1
    Email author
  1. 1.State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical SchoolSichuan UniversityChengduChina
  2. 2.Department of Textile Engineering, College of Light Industry & Textile & Food EngineeringSichuan UniversityChengdu, SichuanChina

Personalised recommendations