Science China Chemistry

, Volume 61, Issue 12, pp 1609–1618 | Cite as

High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport

  • Weiping Li
  • Dong Yan
  • Feng LiuEmail author
  • Thomas Russell
  • Chuanlang ZhanEmail author
  • Jiannian YaoEmail author


The polymer/small-molecule electron donor and nonfullerene organic electron acceptor are of structural similarity with both donor and acceptor molecules consisting of polycyclic fused-ring backbone and being decorated with alkyl-chains. In this study, we report that the introduction of binary fullerenes (C60-/C70-PCBM and C60-/C70-ICBA) into a nonfullerene binary system PBDB-T:ITIC reduces the polymer-nonfullerene acceptor intermixing, obtaining higher crystallinity with (100) crystal coherence length from 28 to 29–33 nm for the ITIC, and from 14 to 20–24 nm for the PBDB-T, and improved electron and hole mobilities both. Unprecedentedly, such a protocol reduces the ITIC optical band gap from 1.59 to 1.55 eV. As consequences, higher short-circuit current-density (17.8–18.4 vs. 15.8 mA/cm2), open-circuit voltage (0.92 vs. 0.90 V) and fill-factor (0.72–0.73 vs. 0.68) are simultaneously obtained, which ultimately afford higher efficient quaternary polymer solar cells with power conversion efficiencies (PCEs) up to 12.0%–12.8% comparing to the host binary device with 9.9% efficiency. For the polymer, ITIC, and ICBA/PCBM ternary blends, 11% PCEs were recorded. The use of PCBM leads to larger red-shifting in thin film absorption and external quantum efficiency (EQE) response. Such effect is more pronounced when ICBA:PCBM mixture is used. These results indicate the size and shape of C60 and C70 as well as the substituent position of the second indene unit on C60-/C70-ICBA affect not only the blend morphology but also the electronic coupling in BHJ mixtures: the quaternary device performance increased in sequences of C70-PCBM:C70-ICBA→C70-PCBM:C60-ICBA→C60-PCBM:C70-ICBA→C60-PCBM: C60-ICBA. The resonant soft X-ray scattering (RSoXS) data indicated the most refined phase separation in the C60-PCBM:C60-ICBA based blend, corresponding to its best device function among the quaternary devices. These results indicate that the using of binary fullerenes as the acceptor additives allows for tuning nonfullerene blended film’s optical properties and film-morphologies, shedding light on the designing high-performance multi-acceptor polymer solar cells.


quaternary bulk-heterojunction polymer solar cell nonfullerene acceptor fullerene-free fullerene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (91433202, 21773262, 21327805, 21521062, 91227112), Chinese Academy of Sciences (XDB12010200), Ministry of Science and Technology of China (2013CB933503), and the US Office of Naval Research (N00014-15-1-2244). Parts of this research were conducted at beamline 7.3.3 and, and Molecular Foundry at Lawrence Berkeley National Laboratory, which was sustained by the Department of Energy, Office of Science, and Office of Basic Energy Sciences

Supplementary material

11426_2018_9320_MOESM1_ESM.pdf (1.1 mb)
High-Efficiency Quaternary Polymer Solar Cells Enabled with Binary Fullerene Additives to Reduce Nonfullerene Acceptor Optical Band Gap and Improve Carriers Transport


  1. 1.
    Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336–1343CrossRefGoogle Scholar
  2. 2.
    Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y, Wang Y, Zhang H, Li C, Hou J, Chen Y. J Am Chem Soc, 2017, 139: 4929–4934CrossRefGoogle Scholar
  3. 3.
    Luo Z, Zhao Y, Zhang ZG, Li G, Wu K, Xie D, Gao W, Li Y, Yang C. ACS Appl Mater Interfaces, 2017, 9: 34146–34152CrossRefGoogle Scholar
  4. 4.
    Ma Y, Zhang M, Tang Y, Ma W, Zheng Q. Chem Mater, 2017, 29: 9775–9785CrossRefGoogle Scholar
  5. 5.
    Li Y, Zhong L, Gautam B, Bin HJ, Lin JD, Wu FP, Zhang Z, Jiang ZQ, Zhang ZG, Gundogdu K, Li Y, Liao LS. Energy Environ Sci, 2017, 10: 1610–1620CrossRefGoogle Scholar
  6. 6.
    Li S, Zhan L, Liu F, Ren J, Shi M, Li CZ, Russell TP, Chen H. Adv Mater, 2018, 30: 1705208CrossRefGoogle Scholar
  7. 7.
    Xue L, Yang Y, Xu J, Zhang C, Bin H, Zhang ZG, Qiu B, Li X, Sun C, Gao L, Yao J, Chen X, Yang Y, Xiao M, Li Y. Adv Mater, 2017, 29: 1703344CrossRefGoogle Scholar
  8. 8.
    Jin Y, Chen Z, Xiao M, Peng J, Fan B, Ying L, Zhang G, Jiang XF, Yin Q, Liang Z, Huang F, Cao Y. Adv Energy Mater, 2017, 7: 1700944CrossRefGoogle Scholar
  9. 9.
    Firdaus Y, Maffei LP, Cruciani F, Müller MA, Liu S, Lopatin S, Wehbe N, Ndjawa GON, Amassian A, Laquai F, Beaujuge PM. Adv Energy Mater, 2017, 7: 1700834CrossRefGoogle Scholar
  10. 10.
    Bao X, Zhang Y, Wang J, Zhu D, Yang C, Li Y, Yang C, Xu J, Yang R. Chem Mater, 2017, 29: 6766–6771CrossRefGoogle Scholar
  11. 11.
    Xia D, Wu Y, Wang Q, Zhang A, Li C, Lin Y, Colberts FJM, van Franeker JJ, Janssen RAJ, Zhan X, Hu W, Tang Z, Ma W, Li W. Macromolecules, 2016, 49: 6445–6454CrossRefGoogle Scholar
  12. 12.
    Chen S, Liu Y, Zhang L, Chow PCY, Wang Z, Zhang G, Ma W, Yan H. J Am Chem Soc, 2017, 139: 6298–6301CrossRefGoogle Scholar
  13. 13.
    Yang F, Wang X, Feng G, Ma J, Li C, Li J, Ma W, Li W. Sci China Chem, 2018, 61: 824–829CrossRefGoogle Scholar
  14. 14.
    Wang T, Feng L, Yuan J, Jiang L, Deng W, Zhang ZG, Li Y, Zou Y. Sci China Chem, 2018, 61: 206–214CrossRefGoogle Scholar
  15. 15.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151CrossRefGoogle Scholar
  16. 16.
    Xu SJ, Zhou Z, Liu W, Zhang Z, Liu F, Yan H, Zhu X. Adv Mater, 2017, 29: 1704510CrossRefGoogle Scholar
  17. 17.
    Li S, Ye L, Zhao W, Liu X, Zhu J, Ade H, Hou J. Adv Mater, 2017, 29: 1704051CrossRefGoogle Scholar
  18. 18.
    Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144CrossRefGoogle Scholar
  19. 19.
    Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423–9429CrossRefGoogle Scholar
  20. 20.
    Xu X, Yu T, Bi Z, Ma W, Li Y, Peng Q. Adv Mater, 2018, 30: 1703973CrossRefGoogle Scholar
  21. 21.
    Li W, Ye L, Li S, Yao H, Ade H, Hou J. Adv Mater, 2018, 30: 1707170CrossRefGoogle Scholar
  22. 22.
    Fan Q, Zhu Q, Xu Z, Su W, Chen J, Wu J, Guo X, Ma W, Zhang M, Li Y. Nano Energy, 2018, Google Scholar
  23. 23.
    Yao H, Ye L, Hou J, Jang B, Han G, Cui Y, Su GM, Wang C, Gao B, Yu R, Zhang H, Yi Y, Woo HY, Ade H, Hou J. Adv Mater, 2017, 29: 1700254CrossRefGoogle Scholar
  24. 24.
    Luo Z, Bin H, Liu T, Zhang ZG, Yang Y, Zhong C, Qiu B, Li G, Gao W, Xie D, Wu K, Sun Y, Liu F, Li Y, Yang C. Adv Mater, 2018, 30: 1706124CrossRefGoogle Scholar
  25. 25.
    Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang ZG, Li Y. Nat Commun, 2018, 9: 743CrossRefGoogle Scholar
  26. 26.
    Xiao Z, Jia X, Li D, Wang S, Geng X, Liu F, Chen J, Yang S, Russell TP, Ding L. Sci Bull, 2017, 62: 1494–1496CrossRefGoogle Scholar
  27. 27.
    Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv Mater, 2018, 30: 1707150CrossRefGoogle Scholar
  28. 28.
    Luo Z, Li G, Gao W, Wu K, Zhang ZG, Qiu B, Bin H, Xue L, Liu F, Li Y, Yang C. J Mater Chem A, 2018, 6: 6874–6881CrossRefGoogle Scholar
  29. 29.
    Fei Z, Eisner FD, Jiao X, Azzouzi M, Röhr JA, Han Y, Shahid M, Chesman ASR, Easton CD, McNeill CR, Anthopoulos TD, Nelson J, Heeney M. Adv Mater, 2018, 30: 1705209CrossRefGoogle Scholar
  30. 30.
    Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Adv Mater, 2018, 30: 1707353CrossRefGoogle Scholar
  31. 31.
    Xu X, Li Z, Bi Z, Yu T, Ma W, Feng K, Li Y, Peng Q. Adv Mater, 2018, 30: 1800737CrossRefGoogle Scholar
  32. 32.
    Li S, Ye L, Zhao W, Zhang S, Ade H, Hou J. Adv Energy Mater, 2017, 7: 1700183CrossRefGoogle Scholar
  33. 33.
    Zhang Z, Feng L, Xu S, Yuan J, Zhang ZG, Peng H, Li Y, Zou Y. J Mater Chem A, 2017, 5: 11286–11293CrossRefGoogle Scholar
  34. 34.
    Zhang X, Yao J, Zhan C. Sci China Chem, 2016, 59: 209–217CrossRefGoogle Scholar
  35. 35.
    Liu W, Li W, Yao J, Zhan C. Chin Chem Lett, 2018, 29: 381–384CrossRefGoogle Scholar
  36. 36.
    Feng S, Zhang C, Liu Y, Bi Z, Zhang Z, Xu X, Ma W, Bo Z. Adv Mater, 2017, 29: 1703527CrossRefGoogle Scholar
  37. 37.
    Yao Z, Liao X, Gao K, Lin F, Xu X, Shi X, Zuo L, Liu F, Chen Y, Jen AKY. J Am Chem Soc, 2018, 140: 2054–2057CrossRefGoogle Scholar
  38. 38.
    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537CrossRefGoogle Scholar
  39. 39.
    Ameri T, Heumüller T, Min J, Li N, Matt G, Scherf U, Brabec CJ. Energy Environ Sci, 2013, 6: 1796CrossRefGoogle Scholar
  40. 40.
    Lu L, Xu T, Chen W, Landry ES, Yu L. Nat Photon, 2014, 8: 716–722CrossRefGoogle Scholar
  41. 41.
    Street RA, Davies D, Khlyabich PP, Burkhart B, Thompson BC. J Am Chem Soc, 2013, 135: 986–989CrossRefGoogle Scholar
  42. 42.
    Mollinger SA, Vandewal K, Salleo A. Adv Energy Mater, 2015, 5: 1501335CrossRefGoogle Scholar
  43. 43.
    Zhang J, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. J Am Chem Soc, 2015, 137: 8176–8183CrossRefGoogle Scholar
  44. 44.
    An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B. Energy Environ Sci, 2016, 9: 281–322CrossRefGoogle Scholar
  45. 45.
    Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424–2434CrossRefGoogle Scholar
  46. 46.
    Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387–2395CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Deng D, Lu K, Zhang J, Xia B, Zhao Y, Fang J, Wei Z. Adv Mater, 2015, 27: 1071–1076CrossRefGoogle Scholar
  48. 48.
    Xu X, Bi Z, Ma W, Wang Z, Choy WCH, Wu W, Zhang G, Li Y, Peng Q. Adv Mater, 2017, 29: 1704271CrossRefGoogle Scholar
  49. 49.
    Zhong L, Gao L, Bin H, Hu Q, Zhang ZG, Liu F, Russell TP, Zhang Z, Li Y. Adv Energy Mater, 2017, 7: 1602215CrossRefGoogle Scholar
  50. 50.
    Lee TH, Uddin MA, Zhong C, Ko SJ, Walker B, Kim T, Yoon YJ, Park SY, Heeger AJ, Woo HY, Kim JY. Adv Energy Mater, 2016, 6: 1600637CrossRefGoogle Scholar
  51. 51.
    Kumari T, Lee SM, Kang SH, Chen S, Yang C. Energy Environ Sci, 2017, 10: 258–265CrossRefGoogle Scholar
  52. 52.
    Yang Y, Chen W, Dou L, Chang WH, Duan HS, Bob B, Li G, Yang Y. Nat Photon, 2015, 9: 190–198CrossRefGoogle Scholar
  53. 53.
    Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch I. Acc Chem Res, 2015, 48: 2803–2812CrossRefGoogle Scholar
  54. 54.
    Liu T, Guo Y, Yi Y, Huo L, Xue X, Sun X, Fu H, Xiong W, Meng D, Wang Z, Liu F, Russell TP, Sun Y. Adv Mater, 2016, 28: 10008–10015CrossRefGoogle Scholar
  55. 55.
    Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363–369CrossRefGoogle Scholar
  56. 56.
    Yu R, Zhang S, Yao H, Guo B, Li S, Zhang H, Zhang M, Hou J. Adv Mater, 2017, 29: 1700437CrossRefGoogle Scholar
  57. 57.
    Yu J, Xi Y, Chueh CC, Xu JQ, Zhong H, Lin F, Jo SB, Pozzo LD, Tang W, Jen AKY. Nano Energy, 2017, 39: 454–460CrossRefGoogle Scholar
  58. 58.
    Cheng P, Wang R, Zhu J, Huang W, Chang SY, Meng L, Sun P, Cheng HW, Qin M, Zhu C, Zhan X, Yang Y. Adv Mater, 2018, 30: 1705243CrossRefGoogle Scholar
  59. 59.
    Jiang W, Yu R, Liu Z, Peng R, Mi D, Hong L, Wei Q, Hou J, Kuang Y, Ge Z. Adv Mater, 2018, 30: 1703005CrossRefGoogle Scholar
  60. 60.
    Wu W, Zhang G, Xu X, Wang S, Li Y, Peng Q. Adv Funct Mater, 2018, 28: 1707493CrossRefGoogle Scholar
  61. 61.
    Cheng P, Wang J, Zhang Q, Huang W, Zhu J, Wang R, Chang SY, Sun P, Meng L, Zhao H, Cheng HW, Huang T, Liu Y, Wang C, Zhu C, You W, Zhan X, Yang Y. Adv Mater, 2018, 30: 1801501CrossRefGoogle Scholar
  62. 62.
    Baran D, Kirchartz T, Wheeler S, Dimitrov S, Abdelsamie M, Gorman J, Ashraf RS, Holliday S, Wadsworth A, Gasparini N, Kaienburg P, Yan H, Amassian A, Brabec CJ, Durrant JR, McCulloch I. Energy Environ Sci, 2016, 9: 3783–3793CrossRefGoogle Scholar
  63. 63.
    Xiao B, Tang A, Zhang J, Mahmood A, Wei Z, Zhou E. Adv Energy Mater, 2017, 7: 1602269CrossRefGoogle Scholar
  64. 64.
    Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z. J Am Chem Soc, 2017, 139: 3356–3359CrossRefGoogle Scholar
  65. 65.
    Liu W, Yao J, Zhan C. Chin J Chem, 2017, 35: 1813–1823CrossRefGoogle Scholar
  66. 66.
    Lin J-D, Zhong L, Wu F-P, Li Y, Yuan Y, Bin H, Zhang Z, Liu F, Fan J, Zhang Z-G, Liao L-S, Jiang Z-Q, Li Y. Sci China Chem, 2018, Google Scholar
  67. 67.
    Feng S, Ma D, Wu L, Liu Y, Zhang C E, Xu X, Chen X, Yan S, Bo Z. Sci China Chem, 2018, Google Scholar
  68. 68.
    Angmo D, Bjerring M, Nielsen NC, Thompson BC, Krebs FC. J Mater Chem C, 2015, 3: 5541–5548CrossRefGoogle Scholar
  69. 69.
    Khlyabich PP, Burkhart B, Thompson BC. J Am Chem Soc, 2011, 133: 14534–14537CrossRefGoogle Scholar
  70. 70.
    Huang TY, Patra D, Hsiao YS, Chang SH, Wu CG, Ho KC, Chu CW. J Mater Chem A, 2015, 3: 10512–10518CrossRefGoogle Scholar
  71. 71.
    Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z’, Hou J. Macromolecules, 2012, 45: 9611–9617CrossRefGoogle Scholar
  72. 72.
    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174CrossRefGoogle Scholar
  73. 73.
    Cha H, Wu J, Wadsworth A, Nagitta J, Limbu S, Pont S, Li Z, Searle J, Wyatt MF, Baran D, Kim JS, McCulloch I, Durrant JR. Adv Mater, 2017, 29: 1701156CrossRefGoogle Scholar
  74. 74.
    Lu H, Zhang J, Chen J, Liu Q, Gong X, Feng S, Xu X, Ma W, Bo Z. Adv Mater, 2016, 28: 9559–9566CrossRefGoogle Scholar
  75. 75.
    Li W, Yan D, Liu W, Chen J, Xu W, Zhan C, Yao J. Sol RRL, 2017, 1: 1700014CrossRefGoogle Scholar
  76. 76.
    Zhao W, Li S, Zhang S, Liu X, Hou J. Adv Mater, 2016, 29: 1604059CrossRefGoogle Scholar
  77. 77.
    Chen Y, Ye P, Zhu ZG, Wang X, Yang L, Xu X, Wu X, Dong T, Zhang H, Hou J, Liu F, Huang H. Adv Mater, 2017, 29: 1603154CrossRefGoogle Scholar
  78. 78.
    An M, Xie F, Geng X, Zhang J, Jiang J, Lei Z, He D, Xiao Z, Ding L. Adv Energy Mater, 2017, 7: 1602509CrossRefGoogle Scholar
  79. 79.
    Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562–1564CrossRefGoogle Scholar
  80. 80.
    Huang G, Zhang J, Uranbileg N, Chen W, Jiang H, Tan H, Zhu W, Yang R. Adv Energy Mater, 2018, 8: 1702489CrossRefGoogle Scholar
  81. 81.
    Chen Y, Qin Y, Wu Y, Li C, Yao H, Liang N, Wang X, Li W, Ma W, Hou J. Adv Energy Mater, 2017, 7: 1700328CrossRefGoogle Scholar
  82. 82.
    Ameri T, Khoram P, Min J, Brabec CJ. Adv Mater, 2013, 25: 4245–4266CrossRefGoogle Scholar
  83. 83.
    Li W, Zhang X, Zhang X, Yao J, Zhan C. ACS Appl Mater Interfaces, 2017, 9: 1446–1452CrossRefGoogle Scholar
  84. 84.
    Li CZ, Chueh CC, Yip HL, O’Malley KM, Chen WC, Jen AKY. J Mater Chem, 2012, 22: 8574–8578CrossRefGoogle Scholar
  85. 85.
    Han G, Guo Y, Song X, Wang Y, Yi Y. J Mater Chem C, 2017, 5: 4852–4857CrossRefGoogle Scholar
  86. 86.
    Tang A, Zhan C, Yao J. Adv Energy Mater, 2015, 5: 1500059CrossRefGoogle Scholar
  87. 87.
    Chen Y, Zhang X, Zhan C, Yao J. ACS Appl Mater Interfaces, 2015, 7: 6462–6471CrossRefGoogle Scholar
  88. 88.
    Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J. Adv Funct Mater, 2004, 14: 38–44CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Department of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA)Shanghai Jiaotong UniversityShanghaiChina
  3. 3.Department of Polymer Science and Engineering, Room A516, Conte Research CenterUniversity of Massachusetts AmherstAmherstUSA
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations