Advertisement

Science China Chemistry

, Volume 61, Issue 12, pp 1600–1608 | Cite as

Sequential co-immobilization of β-glucosidase and yeast cells on single polymer support for bioethanol production

  • Bin He
  • Xing Zhu
  • Changwen ZhaoEmail author
  • Yuhong Ma
  • Wantai YangEmail author
Articles
  • 26 Downloads

Abstract

Co-immobilization of enzymes and microorganism is an effective way to enable cells to use nonmetabolizable substrates and accelerate reaction rate of overall process. Herein, a facile strategy to separately co-immobilize β-glucosidase (BG) and yeast cells on non-woven fabrics was developed. The BG was firstly in situ entrapped into poly(ethylene glycol) (PEG) network grafted on non-woven fabrics by visible light induced living/controlled graft polymerization. Then re-graft polymerization was performed on the as-formed BG loaded layer by taking advantage of living-grafting polymerization on its surface to in situ encapsulate yeast cells into the second PEG network layer. This layered structure of co-immobilization avoided possible interference between enzyme and cells. Viability assay of yeast cells demonstrated that most of cells were viable after immobilization. While immobilized BG showed decreased Vmax compared to free BG, indicating that entrapping BG into inner PEG network layer restricted its accessibility with substrates. This co-immobilization sheet could successfully convert cellobiose to ethanol and a maximum of 98.6% bioethanol yield can be obtained after 48 h of simultaneous saccharification and fermentation (SSF). The co-immobilization sheet showed excellent reusability and could still reach more than 60% of original ethanol yield after reusing for 7 batches. Compared with the mixed co-immobilization, the sequential layered immobilization in this system showed better stability and higher ethanol yield.

Keywords

immobilization graft polymerization bioethanol enzyme yeast cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51521062, 51103009, 51473015), the Innovation and Promotion Project of Beijing University of Chemical Technology and the Beijing Natural Science Foundation (2162035).

Supplementary material

11426_2018_9319_MOESM1_ESM.docx (423 kb)
Sequential Co-immobilization of β-Glucosidase and Yeast Cells on Single Polymer Support for Bioethanol Production

References

  1. 1.
    Cannella D, Jørgensen H. Biotechnol Bioeng, 2014, 111: 59–68CrossRefGoogle Scholar
  2. 2.
    Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. Biotech Adv, 2015, 33: 1091–1107CrossRefGoogle Scholar
  3. 3.
    Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Renew Energy, 2012, 37: 19–27CrossRefGoogle Scholar
  4. 4.
    Meng X, Ragauskas AJ. Curr Opin Biotech, 2014, 27: 150–158CrossRefGoogle Scholar
  5. 5.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Bioresource Tech, 2010, 101: 4851–4861CrossRefGoogle Scholar
  6. 6.
    Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Chem Rev, 2015, 115: 1308–1448CrossRefGoogle Scholar
  7. 7.
    Holtzapple M, Cognata M, Shu Y, Hendrickson C. Biotechnol Bioeng, 1990, 36: 275–287CrossRefGoogle Scholar
  8. 8.
    Dekker RFH, Wallis AFA. Biotechnol Bioeng, 1983, 25: 3027–3048CrossRefGoogle Scholar
  9. 9.
    Chauve M, Mathis H, Huc D, Casanave D, Monot F, Lopes Ferreira N. Biotechnol Biofuels, 2010, 3: 3–8CrossRefGoogle Scholar
  10. 10.
    Teugjas H, Väljamäe P. Biotechnol Biofuels, 2013, 6: 104CrossRefGoogle Scholar
  11. 11.
    Castro RCA, Roberto IC. Appl Biochem Biotechnol, 2014, 172: 1553–1564CrossRefGoogle Scholar
  12. 12.
    Cao LC, Wang ZJ, Ren GH, Kong W, Li L, Xie W, Liu YH. Biotechnol Biofuels, 2015, 8: 202CrossRefGoogle Scholar
  13. 13.
    Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Filho EXF, Ezeji T. Trends Biochem Sci, 2016, 41: 633–645CrossRefGoogle Scholar
  14. 14.
    Goldemberg J. Biotech Biofuels, 2008, 1: 6CrossRefGoogle Scholar
  15. 15.
    Kossatz HL, Rose SH, Viljoen-Bloom M, van Zyl WH. Process Biochem, 2016, 53: 10–16CrossRefGoogle Scholar
  16. 16.
    Saha BC, Nichols NN, Qureshi N, Kennedy GJ, Iten LB, Cotta MA. Bioresour Tech, 2015, 175: 17–22CrossRefGoogle Scholar
  17. 17.
    de Barros EM, Carvalho VM, Rodrigues THS, Rocha MVP, Gonçalves LRB. Chem Eng J, 2016, 307: 939–947CrossRefGoogle Scholar
  18. 18.
    Brethauer S, Robert Lawrence S, Michael Hans-Peter S. Bioresource Tech, 2017, 237: 135–138CrossRefGoogle Scholar
  19. 19.
    Tran CTH, Nosworthy N, Bilek MMM, McKenzie DR. Biomass Bioenergy, 2015, 81: 234–241CrossRefGoogle Scholar
  20. 20.
    Watanabe I, Miyata N, Ando A, Shiroma R, Tokuyasu K, Nakamura T. Bioresource Tech, 2012, 123: 695–698CrossRefGoogle Scholar
  21. 21.
    Wirawan F, Cheng CL, Kao WC, Lee DJ, Chang JS. Appl Energy, 2012, 100: 19–26CrossRefGoogle Scholar
  22. 22.
    Choi IS, Lee YG, Khanal SK, Park BJ, Bae HJ. Appl Energy, 2015, 140: 65–74CrossRefGoogle Scholar
  23. 23.
    Karagöz P, Özkan M. Bioresource Tech, 2014, 158: 286–293CrossRefGoogle Scholar
  24. 24.
    Chen CC, Wu CH, Wu JJ, Chiu CC, Wong CH, Tsai ML, Lin HTV. Process Biochem, 2015, 50: 1509–1515CrossRefGoogle Scholar
  25. 25.
    Zhou Y, Pan S, Wei X, Wang L, Liu Y. Bioresources, 2013, 8: 2605–2619Google Scholar
  26. 26.
    Martino A, Pifferi PG, Spagna G. Process Biochem, 1996, 31: 287–293CrossRefGoogle Scholar
  27. 27.
    Hahn-Hägerdal B. Biotechnol Bioeng, 1984, 26: 771–774CrossRefGoogle Scholar
  28. 28.
    Grosová Z, Rosenberg M, Gdovin M, Sláviková L, Rebroš M. Food Chem, 2009, 116: 96–100CrossRefGoogle Scholar
  29. 29.
    Staniszewski M, Kujawski W, Lewandowska M. J Food Eng, 2009, 91: 240–249CrossRefGoogle Scholar
  30. 30.
    Giordano RLC, Trovati J, Schmidell W. Appl Biochem Biotechnol, 2008, 147: 47–61CrossRefGoogle Scholar
  31. 31.
    Bandaru VVR, Somalanka SR, Mendu DR, Madicherla NR, Chityala A. Enzyme Microbial Tech, 2006, 38: 209–214CrossRefGoogle Scholar
  32. 32.
    Zhu X, Ma Y, Zhao C, Lin Z, Zhang L, Chen R, Yang W. Langmuir, 2014, 30: 15229–15237CrossRefGoogle Scholar
  33. 33.
    Bradford MM. Anal Biochem, 1976, 72: 248–254CrossRefGoogle Scholar
  34. 34.
    Ma J, Luan S, Song L, Jin J, Yuan S, Yan S, Yang H, Shi H, Yin J. ACS Appl Mater Interfaces, 2014, 6: 1971–1978CrossRefGoogle Scholar
  35. 35.
    Yan S, Luan S, Shi H, Xu X, Zhang J, Yuan S, Yang Y, Yin J. Biomacromolecules, 2016, 17: 1696–1704CrossRefGoogle Scholar
  36. 36.
    Klis FM. Yeast, 1994, 10: 851–869CrossRefGoogle Scholar
  37. 37.
    Figueira JA, Sato HH, Fernandes P. J Agric Food Chem, 2013, 61: 626–634CrossRefGoogle Scholar
  38. 38.
    Albino Gomes A, Pazinatto Telli E, Miletti LC, Skoronski E, Gomes Ghislandi M, Felippe da Silva G, Borba Magalhães ML. Biotech Appl Biochem, 2018, 65: 246–254CrossRefGoogle Scholar
  39. 39.
    Kazan A, Heymuth M, Karabulut D, Akay S, Yildiz-Ozturk E, Onbas R, Muderrisoglu C, Sargin S, Heils R, Smirnova I, Yesil-Celiktas O. Eng Life Sci, 2017, 17: 714–722CrossRefGoogle Scholar
  40. 40.
    Carvalho Y, Almeida JMAR, Romano PN, Farrance K, Demma Carà P, Pereira N, Lopez-Sanchez JA, Sousa-Aguiar EF. Appl Biochem Biotechnol, 2017, 182: 1619–1629CrossRefGoogle Scholar
  41. 41.
    Zhang L, Ma Y, Zhao C, He B, Zhu X, Yang W. Ind Eng Chem Res, 2016, 55: 6354–6364CrossRefGoogle Scholar
  42. 42.
    Olofsson K, Bertilsson M, Lidén G. Biotechnol Biofuels, 2008, 1: 7CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
  3. 3.Department of Mechanical EngineeringThe University of British ColumbiaVancouverCanada
  4. 4.Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of EducationBeijing University of Chemical TechnologyBeijingChina
  5. 5.Beijing Advanced Innovation Centre for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations