Science China Chemistry

, Volume 61, Issue 8, pp 957–965 | Cite as

Controlling the solid-state luminescence of gold(I) N-heterocyclic carbene complexes through changes in the structure of molecular aggregates

  • Arruri Sathyanarayana
  • Shin-ya Nakamura
  • Kyohei Hisano
  • Osamu TsutsumiEmail author
  • Katam Srinivas
  • Ganesan Prabusankar


Thermally stable, solid-state luminescent organic materials are highly desired for the development of practical applications. Herein we synthesized new gold(I) complexes with N-heterocyclic carbene ligands, which have the ability to form strong metal-organic bond. Consequently, their thermochemical stability is enhanced at temperatures around 300 °C. Precise design of the molecular structure of the ligands, with a focus on ensuring low steric hindrance around Au atoms in order to limit disturbances to Au/Au interactions, provided a complex with a densely packed crystal with a shorter intermolecular Au–Au distance (3.17 Å) than the typical distance. In the solid state, this complex exhibited strong aurophilic interactions, which generated intense phosphorescence even in air at room temperature (quantum yield=16%) in spite of absence of any phosphorescence in solution. This behavior is characteristic for solid-state luminescence referred to as aggregation-controlled emission. Furthermore, the gold (I) complex displays capacity for mechano- and vapo-chromism—that is, the ability to change color reversibly in response to the application of external stimuli. We believe that the proposed design framework, which involves controlling thermal stability and luminescence property separately, provides a new opportunity for the development of practical applications using solid-state luminescent organic molecules.


Au complex N-heterocyclic carbene phosphorescence mechanochromism aggregation-induced emission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the JSPS KAKENSHI (18K05265), JST Matching Planner Program (VP29117941122), JICA Collaboration Kick-starter Program (RU and IITH), and the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (Tokyo Institute of Technology).

Supplementary material

11426_2018_9318_MOESM1_ESM.pdf (446 kb)
Controlling the Solid-State Luminescence of Gold(I) N-Heterocyclic Carbene Complexes through Changes in the Structure of Molecular Aggregates


  1. 1(a).
    Shizu K, Lee J, Tanaka H, Nomura H, Yasuda T, Kaji H, Adachi C. Pure Appl Chem, 2015, 87: 627–638CrossRefGoogle Scholar
  2. (b).
    Ghosh B, Shirahata N. Sci Tech Adv Mater, 2014, 15: 014207CrossRefGoogle Scholar
  3. 2.
    Ronda CR. Emission and excitation mechanisms of phosphors. In: Ronda CR, Ed. Luminescence: From Theory to Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 1–34Google Scholar
  4. 3.
    Birks JB. Photophysics of Aromatic Molecules. London: Wiley-Intersience, 1970Google Scholar
  5. 4(a).
    Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740–1741Google Scholar
  6. (b).
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940CrossRefGoogle Scholar
  7. 5.
    Leung KH, Phillips DL, Tse MC, Che CM, Miskowski VM. J Am Chem Soc, 1999, 121: 4799–4803CrossRefGoogle Scholar
  8. 6.
    Yam VWW, Au VKM, Leung SYL. Chem Rev, 2015, 115: 7589–7728CrossRefGoogle Scholar
  9. 7(a).
    Schmidbaur H. Gold Bull, 2000, 33: 3–10CrossRefGoogle Scholar
  10. (b).
    Schmidbaur H, Schier A. Chem Soc Rev, 2012, 41: 370–412CrossRefGoogle Scholar
  11. 8.
    López-de-Luzuriaga JM. Luminescence of Supramolecular Goldcontaining Materials. In: Laguna A, Ed. Modern Supramolecular Gold Chemistry. Weinheim: Wiley-VCH, 2008. 347–402CrossRefGoogle Scholar
  12. 9(a).
    Seki T, Ozaki T, Okura T, Asakura K, Sakon A, Uekusa H, Ito H. Chem Sci, 2015, 6: 2187–2195CrossRefGoogle Scholar
  13. (b).
    Seki T, Sakurada K, Muromoto M, Ito H. Chem Sci, 2015, 6: 1491–1497CrossRefGoogle Scholar
  14. (c).
    Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T. Nat Commun, 2013, 4: 2009CrossRefGoogle Scholar
  15. (d).
    Seki T, Sakurada K, Ito H. Angew Chem Int Ed, 2013, 52: 12828–12832CrossRefGoogle Scholar
  16. 10(a).
    Yamada S, Yamaguchi S, Tsutsumi O. J Mater Chem C, 2017, 5: 7977–7984CrossRefGoogle Scholar
  17. (b).
    Younis O, Rokusha Y, Sugimoto N, Fujisawa K, Yamada S, Tsutsumi O. Mol Crysts Liquid Crysts, 2015, 617: 21–31CrossRefGoogle Scholar
  18. (c).
    Fujisawa K, Okuda Y, Izumi Y, Nagamatsu A, Rokusha Y, Sadaike Y, Tsutsumi O. J Mater Chem C, 2014, 2: 3549–3555CrossRefGoogle Scholar
  19. (d).
    Fujisawa K, Kawakami N, Onishi Y, Izumi Y, Tamai S, Sugimoto N, Tsutsumi O. J Mater Chem C, 2013, 1: 5359–5366CrossRefGoogle Scholar
  20. 11(a).
    McDougald Jr. RN, Chilukuri B, Jia H, Perez MR, Rabaâ H, Wang X, Nesterov VN, Cundari TR, Gnade BE, Omary MA. Inorg Chem, 2014, 53: 7485–7499CrossRefGoogle Scholar
  21. (b).
    Earl LD, Nagle JK, Wolf MO. Inorg Chem, 2014, 53: 7106–7117CrossRefGoogle Scholar
  22. (c).
    Arvapally RK, Sinha P, Hettiarachchi SR, Coker NL, Bedel CE, Patterson HH, Elder RC, Wilson AK, Omary MA. J Phys Chem C, 2007, 111: 10689–10699CrossRefGoogle Scholar
  23. (d).
    White-Morris RL, Olmstead MM, Attar S, Balch AL. Inorg Chem, 2005, 44: 5021–5029CrossRefGoogle Scholar
  24. 12.
    Seki T, Sakurada K, Ito H. Chem Commun, 2015, 51: 13933–13936CrossRefGoogle Scholar
  25. 13.
    Seki T, Kobayashi K, Ito H. Chem Commun, 2017, 53: 6700–6703CrossRefGoogle Scholar
  26. 14.
    Fujisawa K, Yamada S, Yanagi Y, Yoshioka Y, Kiyohara A, Tsutsumi O. Sci Rep, 2015, 5: 7934CrossRefGoogle Scholar
  27. 15.
    Kawano R, Younis O, Ando A, Rokusha Y, Yamada S, Tsutsumi O. Chem Lett, 2016, 45: 66–68CrossRefGoogle Scholar
  28. 16.
    Yamada S, Rokusha Y, Kawano R, Fujisawa K, Tsutsumi O. Faraday Discuss, 2017, 196: 269–283CrossRefGoogle Scholar
  29. 17.
    Díez-González S, Ed. N–Heterocyclic Carbenes From Laboratory Curiosities to Efficient Synthetic Tools. London: RSC Publishing, 2010Google Scholar
  30. 18.
    Ong CW, Liao SC, Chang TH, Hsu HF. J Org Chem, 2004, 69: 3181–3185CrossRefGoogle Scholar
  31. 19.
    Wang HMJ, Chen CYL, Lin IJB. Organometallics, 1999, 18: 1216–1223CrossRefGoogle Scholar
  32. 20(a).
    Sheldrick GM. SHELXS-2014, Program for Crystal Structure Solution. Göttingen: University of Göttingen, 2014Google Scholar
  33. (b).
    Sheldrick GM. Acta Crystlogr A Found Crystlogr, 2008, 64: 112–122CrossRefGoogle Scholar
  34. 21.
    Balch AL, Olmstead MM, Vickery JC. Inorg Chem, 1999, 38: 3494–3499CrossRefGoogle Scholar
  35. 22(a).
    Tiekink ERT, Kang JG. Coordin Chem Rev, 2009, 253: 1627–1648CrossRefGoogle Scholar
  36. (b).
    Koshevoy IO, Sminova ES, Hauka M, Laguna A, Chueca JC, Pakkanen TA, Tunik SP, Ospino I, Crespo O. Dalton Trans, 2011, 40: 7412–7422CrossRefGoogle Scholar
  37. 23(a).
    Wang HMJ, Vasam CS, Tsai TYR, Chen SH, Chang AHH, Lin IJB. Organometallics, 2005, 24: 486–493CrossRefGoogle Scholar
  38. (b).
    Ray L, Shaikh MM, Ghosh P. Inorg Chem, 2008, 47: 230–240CrossRefGoogle Scholar
  39. (c).
    Samantaray MK, Pang K, Shaikh MM, Ghosh P. Inorg Chem, 2008, 47: 4153–4165CrossRefGoogle Scholar
  40. 24(a).
    Yuan WZ, Zhang Y, Tang BZ. Crystallization-induced phosphorescence for purely organic phosphors at room temperature and liquid crystals with aggregation-induced emission characteristics. In: Tang BZ, Qin A, Eds. Aggregation-Induced Emission: Applications. Hoboken: John Wiley & Sons, Ltd, 2013. 43–60CrossRefGoogle Scholar
  41. (b).
    Yuan WZ, Shen XY, Zhao H, Lam JWY, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun JZ, Ma Y, Tang BZ. J Phys Chem C, 2010, 114: 6090–6099CrossRefGoogle Scholar
  42. (c).
    Gong Y, Chen G, Peng Q, Yuan WZ, Xie Y, Li S, Zhang Y, Tang BZ. Adv Mater, 2015, 27: 6195–6201CrossRefGoogle Scholar
  43. 25.
    Xue P, Ding J, Wang P, Lu R. J Mater Chem C, 2016, 4: 6688–6706CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Arruri Sathyanarayana
    • 1
  • Shin-ya Nakamura
    • 1
  • Kyohei Hisano
    • 1
  • Osamu Tsutsumi
    • 1
    Email author
  • Katam Srinivas
    • 2
  • Ganesan Prabusankar
    • 2
  1. 1.Department of Applied ChemistryRitsumeikan UniversityKusatsuJapan
  2. 2.Department of ChemistryIndian Institute of TechnologyKandi, SangareddyIndia

Personalised recommendations