Science China Chemistry

, Volume 61, Issue 12, pp 1619–1623 | Cite as

Chlorine-passivated superatom Al37 clusters for nonlinear optics

  • Haiming Wu
  • Zhixun LuoEmail author


Utilizing a facile top-down synthetic procedure, here we report the finding of a chlorine-passivated Al37 superatom cluster. It is demonstrated that the presence of electrophilic groups, severing as protecting ligands, alters the valence electron count of the metallic core and stabilize the as-prepared aluminum clusters especially when even-numbered chlorine atoms are located at equilibrium positions. Following the discussion regarding their reasonable stabilities, we illustrate the feasible reaction pathways in forming such chlorine-passivated Al37 superatom clusters which bear delocalized superatomic orbitals with five valence 3P5 electrons shifting to the chlorine ligands indicative of a closed electron shell 2F14 of the metal core. The successful synthesis of such chlorine-protected aluminum clusters evidences the compatibility of general theory of cluster chemistry in both gas phase and wet chemistry. Such simple-ligand-protected aluminum clusters exhibit reverse-saturated-absorption (RSA) nonlinear optical property pertaining to electronic transitions within the discrete energy states of cluster materials.


chlorine-passivated superatom Al37 cluster nonlinear optics laser ablation in liquid 



This work was supported by the Key Research Program of Frontier Sciences (QYZDB-SSW-SLH024), the National Natural Science Foundation of China (21722308) and the National Thousand Youth Talents Program.

Supplementary material

11426_2018_9316_MOESM1_ESM.docx (722 kb)
Chlorine-Passivated Superatom Al37 Clusters for Nonlinear Optics


  1. 1.
    Luo Z, Castleman AW. Acc Chem Res, 2014, 47: 2931–2940CrossRefGoogle Scholar
  2. 2.
    Reber AC, Khanna SN. Acc Chem Res, 2017, 50: 255–263CrossRefGoogle Scholar
  3. 3.
    Häkkinen H. Chem Soc Rev, 2008, 37: 1847–1859CrossRefGoogle Scholar
  4. 4.
    Clemenger K. Phys Rev B, 1985, 32: 1359–1362CrossRefGoogle Scholar
  5. 5.
    Fedrigo S, Harbich W, Buttet J. Phys Rev B, 1993, 47: 10706–10715CrossRefGoogle Scholar
  6. 6.
    de Heer WA, Selby K, Kresin V, Masui J, Vollmer M, Chatelain A, Knight WD. Phys Rev Lett, 1987, 59: 1805–1808CrossRefGoogle Scholar
  7. 7.
    Knight WD, Clemenger K, de Heer WA, Saunders WA, Chou MY, Cohen ML. Phys Rev Lett, 1984, 52: 2141–2143CrossRefGoogle Scholar
  8. 8.
    de Heer WA. Rev Mod Phys, 1993, 65: 611–676CrossRefGoogle Scholar
  9. 9.
    Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS. Coord Chem Rev, 2006, 250: 2811–2866CrossRefGoogle Scholar
  10. 10.
    Li WL, Romanescu C, Jian T, Wang LS. J Am Chem Soc, 2012, 134: 13228–13231CrossRefGoogle Scholar
  11. 11.
    Luo Z, Castleman Jr. AW, Khanna SN. Chem Rev, 2016, 116: 14456–14492CrossRefGoogle Scholar
  12. 12.
    Leuchtner RE, Harms AC, Castleman Jr. AW. J Chem Phys, 1989, 91: 2753–2754CrossRefGoogle Scholar
  13. 13.
    Cheng L, Yuan Y, Zhang X, Yang J. Angew Chem Int Ed, 2013, 52: 9035–9039CrossRefGoogle Scholar
  14. 14.
    Qian H, Zhu Y, Jin R. J Am Chem Soc, 2010, 132: 4583–4585CrossRefGoogle Scholar
  15. 15.
    Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Science, 2007, 318: 430–433CrossRefGoogle Scholar
  16. 16.
    Whetten RL, Price RC. Science, 2007, 318: 407–408CrossRefGoogle Scholar
  17. 17.
    Zeng C, Chen Y, Kirschbaum K, Lambright KJ, Jin R. Science, 2016, 354: 1580–1584CrossRefGoogle Scholar
  18. 18.
    Henke P, Trapp N, Anson CE, Schnöckel H. Angew Chem Int Ed, 2010, 49: 3146–3150CrossRefGoogle Scholar
  19. 19.
    Klinkhammer KW, Uhl W, Wagner J, Hiller W. Angew Chem Int Ed Engl, 1991, 30: 179–180CrossRefGoogle Scholar
  20. 20.
    Schnockel H. Chem Rev, 2010, 110: 4125–4163CrossRefGoogle Scholar
  21. 21.
    Ecker A, Weckert E, Schnöckel H. Nature, 1997, 387: 379–381CrossRefGoogle Scholar
  22. 22.
    Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H. Proc Natl Acad Sci USA, 2008, 105: 9157–9162CrossRefGoogle Scholar
  23. 23.
    Luo Z, Reber AC, Jia M, Blades WH, Khanna SN, Castleman AW. Chem Sci, 2016, 7: 3067–3074CrossRefGoogle Scholar
  24. 24.
    Yan Z, Bao R, Huang Y, Chrisey DB. J Phys Chem C, 2010, 114: 11370–11374CrossRefGoogle Scholar
  25. 25.
    Zeng H, Du XW, Singh SC, Kulinich SA, Yang S, He J, Cai W. Adv Funct Mater, 2012, 22: 1333–1353CrossRefGoogle Scholar
  26. 26.
    Scaramuzza S, Zerbetto M, Amendola V. J Phys Chem C, 2016, 120: 9453–9463CrossRefGoogle Scholar
  27. 27.
    Sheik-Bahae M, Said AA, van Stryland EW. Opt Lett, 1989, 14: 955–957CrossRefGoogle Scholar
  28. 28.
    Wu H, Yuan C, Luo Z. J Mater Chem C, 2017, 5: 7561–7566CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Wallingford: Gaussian, Inc., 2009, 19: 227–238Google Scholar
  30. 30.
    Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  31. 31.
    Adamo C, Barone V. J Chem Phys, 1999, 110: 6158–6170CrossRefGoogle Scholar
  32. 32.
    Gonzalez C, Schlegel HB. J Chem Phys, 1989, 90: 2154–2161CrossRefGoogle Scholar
  33. 33.
    Glendening ED, Landis CR, Weinhold F. WIREs Comput Mol Sci, 2012, 2: 1–42CrossRefGoogle Scholar
  34. 34.
    Podagatlapalli GK, Hamad S, Sreedhar S, Tewari SP, Venugopal Rao S. Chem Phys Lett, 2012, 530: 93–97CrossRefGoogle Scholar
  35. 35.
    Luo YR. Handbook of Bond Dissociation Energies in Organic Compounds. Boca Raton: Taylor & Francis Group, LLC, 2002CrossRefGoogle Scholar
  36. 36.
    Kuladeep R, Jyothi L, Prakash P, Mayank Shekhar S, Durga Prasad M, Narayana Rao D. J Appl Phys, 2013, 114: 243101CrossRefGoogle Scholar
  37. 37.
    Jin R, Liu C, Zhao S, Das A, Xing H, Gayathri C, Xing Y, Rosi NL, Gil RR, Jin R. ACS Nano, 2015, 9: 8530–8536CrossRefGoogle Scholar
  38. 38.
    Aguado A, López JM. J Phys Chem Lett, 2013, 4: 2397–2403CrossRefGoogle Scholar
  39. 39.
    Abreu MB, Powell C, Reber AC, Khanna SN. J Am Chem Soc, 2012, 134: 20507–20512CrossRefGoogle Scholar
  40. 40.
    Castro-Lopez M, Brinks D, Sapienza R, van Hulst NF. Nano Lett, 2011, 11: 4674–4678CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations