Advertisement

Science China Chemistry

, Volume 61, Issue 12, pp 1581–1586 | Cite as

X-ray scintillation in lead-free double perovskite crystals

  • Qingsong Hu
  • Zhenzhou Deng
  • Manchen Hu
  • Anjiang Zhao
  • Yaqi Zhang
  • Zhifang Tan
  • Guangda NiuEmail author
  • Haodi Wu
  • Jiang TangEmail author
Articles
  • 137 Downloads

Abstract

Metal halide perovskites have shown great performance for various applications, including solar cells, light emitting diodes, and radiation detectors, but they still suffer from the toxicity of lead and instability. Here we report the use of lanthanide series as trivalent metals to obtain low toxicity and highly stable double perovskites (Cs2NaLnCl6, Ln=Tb or Eu) with high scintillation light yield. The crystals exhibit typical f-f transitions of lanthanide cations, while Cs2NaTbCl6 exhibits strong green photoluminescence, and Cs2NaEuCl6 exhibits red photoluminescence. Under X-ray radiations, the light yield of Cs2NaTbCl6 reaches 46600 photons MeV−1, much higher than that of the commercially used (Lu,Y)2SiO5:Ce3+ crystals (LYSO, 28500 photons MeV−1), and previously reported lead-based perovskites (14000 photons MeV−1). As a new member of lead-free perovskites, lanthanide-based double perovskites open up a new route toward radiation detections and potential medical imaging.

Keywords

low toxic scintillation light yield lanthanide double perovskites 

Notes

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (2016YFB0700702), the National Natural Science Foundation of China (5171101030, 51602114), the HUST Key Innovation Team for Interdisciplinary Promotion (2016JCTD111) and the Open Fund of State Key Laboratory of Luminescence and Applications (SKLA-2016-08). The authors thank the Analytical and Testing Center of HUST and the facility support of the Center for Nanoscale Characterization and Devices, WNLO.

Supplementary material

11426_2018_9308_MOESM1_ESM.docx (591 kb)
X-ray scintillation in lead-free double perovskite crystals

References

  1. 1.
    Weber MJ. Lumin 2002, 100: 35–45CrossRefGoogle Scholar
  2. 2.
    van Eijk CWE. Phys Med Biol, 2002, 47: R85–R106CrossRefGoogle Scholar
  3. 3.
    Kinahan PE, Hasegawa BH, Beyer T. Semin Nucl Med 2003, 33: 166–179CrossRefGoogle Scholar
  4. 4.
    Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin WJ, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Nat Photon 2017, 11: 726–732CrossRefGoogle Scholar
  5. 5.
    Antonuk LE, El-Mohri Y, Siewerdsen JH, Yorkston J, Huang W, Scarpine VE, Street RA. Med Phys 1997, 24: 51–70CrossRefGoogle Scholar
  6. 6.
    Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang HH, Wang C, Ecker BR, Gao Y, Loi MA, Cao L, Huang J. Nat Photon 2016, 10: 333–339CrossRefGoogle Scholar
  7. 7.
    Kim YC, Kim KH, Son DY, Jeong DN, Seo JY, Choi YS, Han IT, Lee SY, Park NG. Nature 2017, 550: 87–91CrossRefGoogle Scholar
  8. 8.
    Wei W, Zhang Y, Xu Q, Wei H, Fang Y, Wang Q, Deng Y, Li T, Gruverman A, Cao L, Huang J. Nat Photon 2017, 11: 315–321CrossRefGoogle Scholar
  9. 9.
    Yuan H, Debroye E, Janssen K, Naiki H, Steuwe C, Lu G, Moris M, Orgiu E, Uji-I H, Schryver F, Samorì P, Hofkens J, Roeffaers M. J Phys Chem Lett 2016, 7: 561–566CrossRefGoogle Scholar
  10. 10.
    Lignos I, Stavrakis S, Nedelcu G, Protesescu L, de Mello AJ, Kovalenko MV. Nano Lett 2016, 16: 1869–1877CrossRefGoogle Scholar
  11. 11.
    Kawano N, Koshimizu M, Okada G, Fujimoto Y, Kawaguchi N, Yanagida T, Asai K. Sci Rep 2017, 7: 14754CrossRefGoogle Scholar
  12. 12.
    Baryshevsky VG, Korzhik MV, Minkov BI, Smirnova SA, Fyodorov AA, Dorenbos P, van Eijk CWE. J Phys-Condens Matter 1993, 5: 7893–7902CrossRefGoogle Scholar
  13. 13.
    Holl I, Lorenz E, Mageras G. IEES Trans Nucl Sci 1988, 35: 105–109CrossRefGoogle Scholar
  14. 14.
    Seferlis Ι. Investigatoin and imaging characteristics of a CMOS sensor based digital detector coupled to a red emitting fluorescent screen. Dissertation for the Master Degree. Patras: University of Patras 2013Google Scholar
  15. 15.
    Slavney AH, Hu T, Lindenberg AM, Karunadasa HI. Am Chem Soc 2016, 138: 2138–2141CrossRefGoogle Scholar
  16. 16.
    Luo J, Li S, Wu H, Zhou Y, Li Y, Liu J, Li J, Li K, Yi F, Niu G, Tang J. AC Photonics 2018, 5: 398–405CrossRefGoogle Scholar
  17. 17.
    Volonakis G, Haghighirad AA, Milot RL, Sio WH, Filip MR, Wenger B, Johnston MB, Herz LM, Snaith HJ, Giustino F. Phys Chem Lett 2017, 8: 772–778CrossRefGoogle Scholar
  18. 18.
    Greul E, Petrus ML, Binek A, Docampo P, Bein T. Mater Chem A 2017, 5: 19972–19981CrossRefGoogle Scholar
  19. 19.
    Lozhkina OA, Murashkina AA, Elizarov MS, Shilovskikh VV, Zolotarev AA, Kapitonov YV, Kevorkyants R, Emeline AV, Miyasaka T. Chem Phys Lett 2018, 694: 18–22CrossRefGoogle Scholar
  20. 20.
    Meng W, Wang X, Xiao Z, Wang J, Mitzi DB, Yan Y. Phys Chem Lett 2017, 8: 2999–3007CrossRefGoogle Scholar
  21. 21.
    Shi H, Du MH. Phys Rev Appl 2015, 3: 054005CrossRefGoogle Scholar
  22. 22.
    Toby BH. Appl Crystlogr 2001, 34: 210–213CrossRefGoogle Scholar
  23. 23.
    Poblete V, Navarro G, Martin V, Alvarez M. Powder Diffr 2002, 17: 10–12CrossRefGoogle Scholar
  24. 24.
    Morss LR, Siegal M, Stenger L, Edelstein N. Inorg Chem 2002, 9: 1771–1775CrossRefGoogle Scholar
  25. 25.
    Faulkner TR, Richardson FS. Mol Phys 1978, 36: 193–914CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Li X, Li K, Lian H, Shang M, Lin J. AC. Appl Mater Interfaces 2015, 7: 2715–2725CrossRefGoogle Scholar
  27. 27.
    Banerjee AK, Stewart-Darling F, Flint CD, Schwartz RW. Phys Chem 1981, 85: 146–148CrossRefGoogle Scholar
  28. 28.
    Liu Y, Tu D, Zhu H, Li R, Luo W, Chen X. Adv Mater 2010, 22: 3266–3271CrossRefGoogle Scholar
  29. 29.
    Li L, Peng M, Viana B, Wang J, Lei B, Liu Y, Zhang Q, Qiu J. Inorg Chem 2015, 54: 6028–6034CrossRefGoogle Scholar
  30. 30.
    Tang W, Zhang Z. Mater Chem C 2015, 3: 5339–5346CrossRefGoogle Scholar
  31. 31.
    Glodo J, van Loef EVD, Higgins WM, Shah KS. IEEE T Nucl Sci, 2008, 55: 1496–1500CrossRefGoogle Scholar
  32. 32.
    Hawrami R, Glodo J, Shah KS, Cherepy N, Payne S, Burger A, Boatner L. Cryst Growth 2013, 379: 69–72CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qingsong Hu
    • 1
  • Zhenzhou Deng
    • 2
  • Manchen Hu
    • 3
  • Anjiang Zhao
    • 4
  • Yaqi Zhang
    • 5
  • Zhifang Tan
    • 1
  • Guangda Niu
    • 1
    Email author
  • Haodi Wu
    • 1
  • Jiang Tang
    • 1
    Email author
  1. 1.Wuhan National Laboratory for Optoelectronics (WNLO)Huazhong University of Science and Technology (HUST)WuhanChina
  2. 2.School of Information EngineeringNanchang UniversityNanchangChina
  3. 3.School of Optical and Electronic InformationHuazhong University of Science and Technology (HUST)WuhanChina
  4. 4.College of Life Science and TechnologyHuazhong University of Science and Technology (HUST)WuhanChina
  5. 5.College of PhysicsHuazhong University of Science and Technology (HUST)WuhanChina

Personalised recommendations