Science China Chemistry

, Volume 61, Issue 8, pp 882–891 | Cite as

Biothiol-specific fluorescent probes with aggregation-induced emission characteristics

  • Siyang Ding
  • Mengjie Liu
  • Yuning HongEmail author
Mini Reviews


Biothiols are important species in physiological processes such as regulating protein structures, redox homeostasis and cell signalling. Alternation in the biothiol levels is associated with various pathological processes, therefore non-invasive fluorescent probes with high specificity to biothiols are highly desirable research utilities. Meanwhile, fluorescent probes with aggregation-induced emission properties (AIEgens) possess unique photophysical properties that allow modulation of the sensing process through controlling the aggregation-disaggregation or the intramolecular rotational motions of the fluorophores. Herein we review the recent progress in the development of biothiol-specific AIEgens. In particular, the molecular design principles to target different types of biothiols and the corresponding sensing mechanisms are discussed, along with the potential of the future design and development of multi-functional bioprobes.


biothiols detection aggregation-induced emission fluorescent probes bioimaging biosensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Australian Research Council (DE170100058) and Rebecca L. Cooper Medical Research Foundation.


  1. 1.
    Hwang C, Sinskey AJ, Lodish HF. Science, 1992, 257: 1496–1502CrossRefGoogle Scholar
  2. 2.
    Schulz JB, Lindenau J, Seyfried J, Dichgans J. Eur J Biochem, 2000, 267: 4904–4911CrossRefGoogle Scholar
  3. 3.
    Wood ZA, Schröder E, Robin Harris J, Poole LB. Trends Biochem Sci, 2003, 28: 32–40CrossRefGoogle Scholar
  4. 4.
    Mohamed MM, Sloane BF. Nat Rev Cancer, 2006, 6: 764–775CrossRefGoogle Scholar
  5. 5.
    Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, Bachovchin DA, Mowen K, Baker D, Cravatt BF. Nature, 2010, 468: 790–795CrossRefGoogle Scholar
  6. 6.
    Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A, Bankston LA. Trends Neurosci, 2002, 25: 474–480CrossRefGoogle Scholar
  7. 7.
    Chu PY, Liu MY. J Funct Foods, 2015, 18: 455–462CrossRefGoogle Scholar
  8. 8.
    Marino SM, Gladyshev VN. J Mol Biol, 2010, 404: 902–916CrossRefGoogle Scholar
  9. 9.
    Lin J, Lee IM, Song Y, Cook NR, Selhub J, Manson JAE, Buring JE, Zhang SM. Cancer Res, 2010, 70: 2397–2405CrossRefGoogle Scholar
  10. 10.
    Finkelstein JD, Martin JJ. Int J Biochem Cell Biol, 2000, 32: 385–389CrossRefGoogle Scholar
  11. 11.
    Nekrassova O. Talanta, 2003, 60: 1085–1095CrossRefGoogle Scholar
  12. 12.
    Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. J Nutrit, 2004, 134: 489–492Google Scholar
  13. 13.
    Townsend DM, Tew KD, Tapiero H. Biomed Pharmacother, 2003, 57: 145–155CrossRefGoogle Scholar
  14. 14.
    Akerboom TP, Bilzer M, and Sies H. J Biol Chem, 1982, 257: 4248–4252Google Scholar
  15. 15.
    Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J. Clin Sci, 2011, 121: 459–488CrossRefGoogle Scholar
  16. 16.
    Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabó C. Proc Natl Acad Sci USA, 2009, 106: 21972–21977CrossRefGoogle Scholar
  17. 17.
    Amarnath K. Talanta, 2003, 60: 1229–1238CrossRefGoogle Scholar
  18. 18.
    Chen W, Zhao Y, Seefeldt T, Guan X. J Pharmaceut Biomed Anal, 2008, 48: 1375–1380CrossRefGoogle Scholar
  19. 19.
    Guo XF, Wang H, Guo YH, Zhang ZX, Zhang HS. J Chromatogr A, 2009, 1216: 3874–3880CrossRefGoogle Scholar
  20. 20.
    Zinellu A, Sotgia S, Scanu B, Usai MF, Fois AG, Spada V, Deledda A, Deiana L, Pirina P, Carru C. Amino Acids, 2009, 37: 395–400CrossRefGoogle Scholar
  21. 21.
    Zhang X, Ren X, Xu QH, Loh KP, Chen ZK. Org Lett, 2009, 11: 1257–1260CrossRefGoogle Scholar
  22. 22.
    McMahon BK, Gunnlaugsson T. J Am Chem Soc, 2012, 134: 10725–10728CrossRefGoogle Scholar
  23. 23.
    Yi L, Li H, Sun L, Liu L, Zhang C, Xi Z. Angew Chem Int Ed, 2009, 48: 4034–4037CrossRefGoogle Scholar
  24. 24.
    Lim CS, Masanta G, Kim HJ, Han JH, Kim HM, Cho BR. J Am Chem Soc, 2011, 133: 11132–11135CrossRefGoogle Scholar
  25. 25.
    Lee MH, Han JH, Kwon PS, Bhuniya S, Kim JY, Sessler JL, Kang C, Kim JS. J Am Chem Soc, 2012, 134: 1316–1322CrossRefGoogle Scholar
  26. 26.
    Wang H, Zhou G, Gai H, Chen X. Chem Commun, 2012, 48: 8341–8343CrossRefGoogle Scholar
  27. 27.
    Xiong X, Song F, Chen G, Sun W, Wang J, Gao P, Zhang Y, Qiao B, Li W, Sun S, Fan J, Peng X. Chem Eur J, 2013, 19: 6538–6545CrossRefGoogle Scholar
  28. 28.
    Niu LY, Guan YS, Chen YZ, Wu LZ, Tung CH, Yang QZ. J Am Chem Soc, 2012, 134: 18928–18931CrossRefGoogle Scholar
  29. 29.
    Long L, Lin W, Chen B, Gao W, Yuan L. Chem Commun, 2011, 47: 893–895CrossRefGoogle Scholar
  30. 30.
    Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740–1741Google Scholar
  31. 31.
    Kumar M, Hong Y, Thorn DC, Ecroyd H, Carver JA. Anal Chem, 2017, 89: 9322–9329CrossRefGoogle Scholar
  32. 32.
    Shi H, Kwok RTK, Liu J, Xing B, Tang BZ, Liu B. J Am Chem Soc, 2012, 134: 17972–17981CrossRefGoogle Scholar
  33. 33.
    Lou X, Zhuang Y, Zuo X, Jia Y, Hong Y, Min X, Zhang Z, Xu X, Liu N, Xia F, Tang BZ. Anal Chem, 2015, 87: 6822–6827CrossRefGoogle Scholar
  34. 34.
    Cheng Y, Dai J, Sun C, Liu R, Zhai T, Lou X, Xia F. Angew Chem Int Ed, 2018, 57: 3123–3127CrossRefGoogle Scholar
  35. 35.
    Parrott EPJ, Tan NY, Hu R, Zeitler JA, Tang BZ, Pickwell-Mac-Pherson E. Mater Horiz, 2014, 1: 251–258CrossRefGoogle Scholar
  36. 36.
    Hong Y, Lam JWY, Tang BZ. Chem Commun, 2009, 1: 4332CrossRefGoogle Scholar
  37. 37.
    Liu Y, Yu Y, Lam JWY, Hong Y, Faisal M, Yuan WZ, Tang BZ. Chem Eur J, 2010, 16: 8433–8438CrossRefGoogle Scholar
  38. 38.
    Chen MZ, Moily NS, Bridgford JL, Wood RJ, Radwan M, Smith TA, Song Z, Tang BZ, Tilley L, Xu X, Reid GE, Pouladi MA, Hong Y, Hatters DM. Nat Commun, 2017, 8: 474CrossRefGoogle Scholar
  39. 39.
    Li X, Zhang X, Chi Z, Chao X, Zhou X, Zhang Y, Liu S, Xu J. Anal Methods, 2012, 4: 3338–3343CrossRefGoogle Scholar
  40. 40.
    Zhao N, Gong Q, Zhang RX, Yang J, Huang ZY, Li N, Tang BZ. J Mater Chem C, 2015, 3: 8397–8402CrossRefGoogle Scholar
  41. 41.
    Chen S, Hong Y, Liu J, Tseng NW, Liu Y, Zhao E, Yip Lam JW, Tang BZ. J Mater Chem B, 2014, 2: 3919–3923CrossRefGoogle Scholar
  42. 42.
    Lou X, Hong Y, Chen S, Leung CWT, Zhao N, Situ B, Lam JWY, Tang BZ. Sci Rep, 2014, 4: 4272CrossRefGoogle Scholar
  43. 43.
    Mei J, Sun JZ, Qin A, Tang BZ. Dyes Pigments, 2017, 141: 366–378CrossRefGoogle Scholar
  44. 44.
    Lou X, Zhao Z, Hong Y, Dong C, Min X, Zhuang Y, Xu X, Jia Y, Xia F, Tang BZ. Nanoscale, 2014, 6: 14691–14696CrossRefGoogle Scholar
  45. 45.
    Yan L, Kong Z, Shen W, Du W, Zhou Y, Qi Z. RSC Adv, 2016, 6: 5636–5640CrossRefGoogle Scholar
  46. 46.
    Yu Y, Li J, Chen S, Hong Y, Ng KM, Luo KQ, Tang BZ. ACS Appl Mater Interfaces, 2013, 5: 4613–4616CrossRefGoogle Scholar
  47. 47.
    Mei J, Tong J, Wang J, Qin A, Sun JZ, Tang BZ. J Mater Chem, 2012, 22: 17063–17070CrossRefGoogle Scholar
  48. 48.
    Mei J, Wang Y, Tong J, Wang J, Qin A, Sun JZ, Tang BZ. Chem Eur J, 2013, 19: 613–620CrossRefGoogle Scholar
  49. 49.
    Peng L, Zhou Z, Wei R, Li K, Song P, Tong A. Dyes Pigments, 2014, 108: 24–31CrossRefGoogle Scholar
  50. 50.
    Jiang G, Liu X, Chen Q, Zeng G, Wu Y, Dong X, Zhang G, Li Y, Fan X, Wang J. Sens Actuat B-Chem, 2017, 252: 712–716CrossRefGoogle Scholar
  51. 51.
    Liu H, Wang X, Xiang Y, Tong A. Anal Methods, 2015, 7: 5028–5033CrossRefGoogle Scholar
  52. 52.
    Li R, Yan L, Wang Z, Qi Z. J Mol Struct, 2017, 1136: 1–6CrossRefGoogle Scholar
  53. 53.
    Zhou X, Guo D, Jiang Y, Gong D, Zhao X, Zhou L. Tetrahedron Lett, 2017, 58: 3214–3218CrossRefGoogle Scholar
  54. 54.
    Zhang R, Yuan Y, Liang J, Kwok RTK, Zhu Q, Feng G, Geng J, Tang BZ, Liu B. ACS Appl Mater Interfaces, 2014, 6: 14302–14310CrossRefGoogle Scholar
  55. 55.
    Yuan Y, Kwok RTK, Feng G, Liang J, Geng J, Tang BZ, Liu B. Chem Commun, 2014, 50: 295–297CrossRefGoogle Scholar
  56. 56.
    Chen M, Chen R, Shi Y, Wang J, Cheng Y, Li Y, Gao X, Yan Y, Sun JZ, Qin A, Kwok RTK, Lam JWY, Tang BZ. Adv Funct Mater, 2018, 28: 1704689CrossRefGoogle Scholar
  57. 57.
    Li H, Feng X, Guo Y, Chen D, Li R, Ren X, Jiang X, Dong Y, Wang B. Sci Rep, 2014, 4: 4366CrossRefGoogle Scholar
  58. 58.
    Zhang W, Kang J, Li P, Wang H, Tang B. Anal Chem, 2015, 87: 8964–8969CrossRefGoogle Scholar
  59. 59.
    Cai Y, Li L, Wang Z, Sun JZ, Qin A, Tang BZ. Chem Commun, 2014, 50: 8892–8895CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Physics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia

Personalised recommendations