Advertisement

Science China Chemistry

, Volume 61, Issue 10, pp 1243–1260 | Cite as

Theranostic nanomedicine by surface nanopore engineering

  • Zhenli Li
  • Luodan Yu
  • Tian Yang
  • Yu Chen
Reviews
  • 15 Downloads

Abstract

Theranostic nanomedicine that integrates diagnostic and therapeutic agents into one nanosystem has gained considerable momentum in the field of cancer treatment. Among diverse strategies for achieving theranostic capabilities, surface-nanopore engineering based on mesoporous silica coating has attracted great interest because of their negligible cytotoxicity and chemically active surface that can be easily modified to introduce various functional groups (e.g., −COOH, −NH2, −SH, etc.) via silanization, which can satisfy various requirements of conjugating biological molecules or functional nanoparticles. In addition, the nanopore-engineered biomaterials possess large surface area and high pore volume, ensuring desirable loading of therapeutic guest molecules. In this review, we comprehensively summarize the synthetic procedure/paradigm of nanopore engineering and further broad theranostic applications. Such nanopore-engineering strategy endows the biocompatible nanocomposites (e.g., Au, Ag, graphene, upconversion nanoparticles, Fe3O4, MXene, etc.) with versatile functional moieties, which enables the development of multifunctional nanoplatforms for multimodal diagnostic bio-imaging, photothermal therapy, photodynamic therapy, targeted drug delivery, synergetic therapy and imaging-guided therapies. Therefore, mesoporous silica-based surface-nanopore engineering integrates intriguing unique features for broadening the biomedical applications of the single mono-functional nanosystem, facilitating the development and further clinical translation of theranostic nanomedicine.

Keywords

mesoporous silica nanopore engineering theranostic cancer nanomedicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0203700), the National Natural Science Foundation of China (51722211, 51672303, 81472284, 81672699), the Program of Shanghai Academic Research Leader (18XD1404300) and Young Elite Scientist Sponsorship Program by CAST (2015QNRC001).

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. CA Cancer J Clin, 2012, 65: 87–108Google Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. CA-. Cancer J Clin, 2013, 63: 11–30Google Scholar
  3. 3.
    GBD 201. Mortality and Causes of Death Collaborators. Lancet, 2015, 385: 117–171Google Scholar
  4. 4.
    Sun C, Lee JSH, Zhang M. Adv Drug Deliver Rev, 2008, 60: 1252–1265Google Scholar
  5. 5.
    Bharali DJ, Mousa SA. Pharm Ther, 2010, 128: 324–335Google Scholar
  6. 6.
    Chaffer CL, Weinberg RA. Science, 2011, 331: 1559–1564Google Scholar
  7. 7.
    Levinson AD. Science, 2010, 328: 137Google Scholar
  8. 8.
    Couzin J. Science, 2008, 321: 1146a–1147a.Google Scholar
  9. 9.
    Biankin AV, Piantadosi S, Hollingsworth SJ. Nature, 2015, 526: 361–370Google Scholar
  10. 10.
    Obenauf AC, Zou Y, Ji AL, Vanharanta S, Shu W, Shi H, Kong X, Bosenberg MC, Wiesner T, Rosen N, Lo RS, Massagué J. Nature, 2015, 520: 368–372Google Scholar
  11. 11.
    Naldini L. Nature, 2015, 526: 351–360Google Scholar
  12. 12.
    Schmidt C. Nature, 2015, 527: S10–S11Google Scholar
  13. 13.
    Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W, Sun Y, Zhao E, Vatan L, Szeliga W, Kotarski J, Tarkowski R, Dou Y, Cho K, Hensley-Alford S, Munkarah A, Liu R, Zou W. Nature, 2015, 527: 249–253Google Scholar
  14. 14.
    Mauceri HJ, Hanna NN, Beckett MA, Gorski DH, Staba MJ, Stellato KA, Bigelow K, Heimann R, Gately S, Dhanabal M, Soff GA, Sukhatme VP, Kufe DW, Weichselbaum RR. Nature, 1998, 394: 287–291Google Scholar
  15. 15.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nat Nanotech, 2007, 2: 751–760Google Scholar
  16. 16.
    Sanhai WR, Sakamoto JH, Canady R, Ferrari M. Nat Nanotech, 2008, 3: 242–244Google Scholar
  17. 17.
    Davis ME, Chen ZG, Shin DM. Nat Rev Drug Discov, 2008, 7: 771–782Google Scholar
  18. 18.
    Lammers T, Hennink WE, Storm G. Br J Cancer, 2008, 99: 392–397Google Scholar
  19. 19.
    Chen Y, Cheng L, Dong Z, Chao Y, Lei H, Zhao H, Wang J, Liu Z. Angew Chem Int Ed, 2017, 56: 12991–12996Google Scholar
  20. 20.
    Attia MF, Anton N, Chiper M, Akasov R, Anton H, Messaddeq N, Fournel S, Klymchenko AS, Mély Y, Vandamme TF. AC. Nano, 2014, 8: 10537–10550Google Scholar
  21. 21.
    Qiao C, Yang J, Shen Q, Liu R, Li Y, Shi Y, Chen J, Shen Y, Xiao Z, Weng J, Zhang X. Adv Mater, 2018, 30: 1705054Google Scholar
  22. 22.
    Wang X, Wu Y, Soesbe TC, Yu J, Zhao P, Kiefer GE, Sherry AD. Angew Chem Int Ed, 2015, 54: 8662–8664Google Scholar
  23. 23.
    Cheng Y, Wang J, Qiu Z, Zheng X, Leung NLC, Lam JWY, Tang BZ. Adv Mater, 2017, 29: 1703900Google Scholar
  24. 24.
    Wang W, Cheng D, Gong F, Miao X, Shuai X. Adv Mater, 2012, 24: 115–120Google Scholar
  25. 25.
    Tang W, Yang Z, Wang S, Wang Z, Song J, Yu G, Fan W, Dai Y, Wang J, Shan L, Niu G, Fan Q, Chen X. ACS Nano, 2018, 12: 2610–2622Google Scholar
  26. 26.
    Zhou J, Jiang Y, Hou S, Upputuri PK, Wu D, Li J, Wang P, Zhen X, Pramanik M, Pu K, Duan H. AC. Nano, 2018, 12: 2643–2651Google Scholar
  27. 27.
    Zhu P, Chen Y, Shi J. AC. Nano, 2018, 12: 3780–3795Google Scholar
  28. 28.
    Huang P, Qian X, Chen Y, Yu L, Lin H, Wang L, Zhu Y, Shi J. Am Chem Soc, 2017, 139: 1275–1284Google Scholar
  29. 29.
    Zhang W, Lu J, Gao X, Li P, Zhang W, Ma Y, Wang H, Tang B. Angew Chem Int Ed, 2018, 57: 4891–4896Google Scholar
  30. 30.
    Song X, Feng L, Liang C, Yang K, Liu Z. Nano Lett, 2016, 16: 6145–6153Google Scholar
  31. 31.
    Nam J, Son S, Ochyl LJ, Kuai R, Schwendeman A, Moon JJ. Nat Commun, 2018, 9: 1074Google Scholar
  32. 32.
    Wang X, Ma Y, Sheng X, Wang Y, Xu H. Nano Lett, 2018, 18: 2217–2225Google Scholar
  33. 33.
    Xie J, Lee S, Chen X. Adv Drug Deliver Rev, 2010, 62: 1064–1079Google Scholar
  34. 34.
    Caruthers SD, Wickline SA, Lanza GM. Curr Opin Biotech, 2007, 18: 26–30Google Scholar
  35. 35.
    Wang L, Zhang H, Qin A, Jin Q, Tang BZ, Ji J. Sci China Chem, 2016, 59: 1609–1615Google Scholar
  36. 36.
    Lammers T, Kiessling F, Hennink WE, Storm G. Mol Pharm, 2010, 7: 1899–1912Google Scholar
  37. 37.
    Yu B, Goel S, Ni D, Ellison PA, Siamof CM, Jiang D, Cheng L, Kang L, Yu F, Liu Z, Barnhart TE, He Q, Zhang H, Cai W. Adv Mater, 2018, 30: 1704934Google Scholar
  38. 38.
    Liu S, Pan J, Liu J, Ma Y, Qiu F, Mei L, Zeng X, Pan G. Small, 2018, 14: 1703968Google Scholar
  39. 39.
    Zhu Y, Wen L, Shao S, Tan Y, Meng T, Yang X, Liu Y, Liu X, Yuan H, Hu F. Biomaterials, 2018, 161: 33–46Google Scholar
  40. 40.
    Sahoo AK, Kanchi S, Mandal T, Dasgupta C, Maiti PK. AC. Appl Mater Interfaces, 2018, 10: 6168–6179Google Scholar
  41. 41.
    Kapoor B, Singh SK, Gulati M, Gupta R, Vaidya Y. Sci World J, 2014, 2014: 1–17Google Scholar
  42. 42.
    Samad A, Sultana Y, Aqil M. CDD, 2007, 4: 297–305Google Scholar
  43. 43.
    Kedar U, Phutane P, Shidhaye S, Kadam V. Nanomed-Nanotechnol Biol Med, 2010, 6: 714–729Google Scholar
  44. 44.
    Nishiyama N, Kataoka K. Pharm Ther, 2006, 112: 630–648Google Scholar
  45. 45.
    Prabhu P, Patravale V. Biomed Nanotechnol, 2012, 8: 859–882Google Scholar
  46. 46.
    Chen X, Gambhir SS, Cheon J. Acc Chem Res, 2011, 44: 841Google Scholar
  47. 47.
    Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J. Nano Lett, 2006, 6: 2427–2430Google Scholar
  48. 48.
    Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V. Biomaterials, 2008, 29: 4012–4021Google Scholar
  49. 49.
    Yuan Y, Ding Z, Qian J, Zhang J, Xu J, Dong X, Han T, Ge S, Luo Y, Wang Y, Zhong K, Liang G. Nano Lett, 2016, 16: 2686–2691Google Scholar
  50. 50.
    Li C, Chen T, Ocsoy I, Zhu G, Yasun E, You M, Wu C, Zheng J, Song E, Huang CZ, Tan W. Adv Funct Mater, 2014, 24: 1772–1780Google Scholar
  51. 51.
    Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J. Am Chem Soc, 2005, 127: 5732–5733Google Scholar
  52. 52.
    Roullin VG, Deverre JR, Lemaire L, Hindré F, Venier-Julienne MC, Vienet R, Benoit JP. Eur J Pharm Biopharm, 2002, 53: 293–299Google Scholar
  53. 53.
    Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D. Cancer Res, 1996, 56: 4686–4693Google Scholar
  54. 54.
    Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, Wang L, Tang R, Feng Q, Hamada Y, Gonda K, Hu Z, Wu X, Jiang X. Angew Chem Int Ed, 2018, 57: 1491–1496Google Scholar
  55. 55.
    Gao J, Sanchez-Purra M, Huang H, Wang S, Chen Y, Yu X, Luo Q, Hamad-Schifferli K, Liu S. Sci China Chem, 2017, 60: 1219–1229Google Scholar
  56. 56.
    Cooper DR, Bekah D, Nadeau JL. Front Chem, 2014, 2: 86Google Scholar
  57. 57.
    Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ. Biomaterials, 2012, 33: 6408–6419Google Scholar
  58. 58.
    Wang S, Li X, Chen Y, Cai X, Yao H, Gao W, Zheng Y, An X, Shi J, Chen H. Adv Mater, 2015, 27: 2775–2782Google Scholar
  59. 59.
    Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X, Feng L, Sun B, Liu Z. Adv Mater, 2014, 26: 3433–3440Google Scholar
  60. 60.
    Wang H, Zhong L, Liu Y, Xu X, Xing C, Wang M, Bai SM, Lu CH, Yang HH. Chem Commun, 2018, 54: 3142–3145Google Scholar
  61. 61.
    Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Am Chem Soc, 2015, 137: 11376–11382Google Scholar
  62. 62.
    Han X, Huang J, Lin H, Wang Z, Li P, Chen Y. Adv Healthc Mater, 2018, 7: 1701394Google Scholar
  63. 63.
    Lin H, Wang Y, Gao S, Chen Y, Shi J. Adv Mater, 2018, 30: 1703284Google Scholar
  64. 64.
    Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, Huang W, Chen P, Shao J, Dong X. AC. Appl Mater Interfaces, 2017, 9: 40077–40086Google Scholar
  65. 65.
    Lin H, Gao S, Dai C, Chen Y, Shi J. Am Chem Soc, 2017, 139: 16235–16247Google Scholar
  66. 66.
    Lin H, Wang X, Yu L, Chen Y, Shi J. Nano Lett, 2017, 17: 384–391Google Scholar
  67. 67.
    Dai C, Zhang S, Liu Z, Wu R, Chen Y. AC. Nano, 2017, 11: 9467–9480Google Scholar
  68. 68.
    Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T, Choi SH, Kim DH. Nat Nanotech, 2016, 11: 566–572Google Scholar
  69. 69.
    Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X, Huang R. Am Chem Soc, 2013, 135: 4799–4804Google Scholar
  70. 70.
    Gorelikov I, Matsuura N. Nano Lett, 2008, 8: 369–373Google Scholar
  71. 71.
    Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS. Acc Chem Res, 2014, 47: 3481–3493Google Scholar
  72. 72.
    Laranjeira M, Shirosaki Y, Yoshimats Yasutomi S, Miyazaki T, Monteiro FJ. J Mater Sci-Mater Med, 2017, 28: 46Google Scholar
  73. 73.
    Liu JN, Bu WB, Shi JL. Acc Chem Res, 2015, 48: 1797–1805Google Scholar
  74. 74.
    Hardikar VV, Matijević E. Colloid Interface Sci, 2000, 221: 133–136Google Scholar
  75. 75.
    Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzán LM. Colloid Interface Sci, 2005, 283: 392–396Google Scholar
  76. 76.
    Zhao Y, Lin LN, Lu Y, Gao HL, Chen SF, Yang P, Yu SH. Adv Healthcare Mater, 2012, 1: 327–331Google Scholar
  77. 77.
    Jaber J, Mohsen E. Colloids Surfs B-Biointerfaces, 2013, 102: 265–272Google Scholar
  78. 78.
    Wu S, Wang H, Tao S, Wang C, Zhang L, Liu Z, Meng C. Anal Chim Acta, 2011, 686: 81–86Google Scholar
  79. 79.
    Chen FH, Zhang LM, Chen QT, Zhang Y, Zhang ZJ. Chem Commun, 2010, 46: 8633–8635Google Scholar
  80. 80.
    Xu H, Cui L, Tong N, Gu H. Am Chem Soc, 2006, 128: 15582–15583Google Scholar
  81. 81.
    Bruchez Moronne M, Gin P, Weiss S, Paul Alivisatos A. Science, 1998, 281: 2013–2016Google Scholar
  82. 82.
    Majeed J, Pradhan L, Ningthoujam RS, Vatsa RK, Bahadur D, Tyagi AK. Colloids Surfs B-Biointerfaces, 2014, 122: 396–403Google Scholar
  83. 83.
    Zhao X, Zhao H, Yuan H, Lan M. Biomed nanotechnol, 2014, 10: 262–270Google Scholar
  84. 84.
    Graf C, Dembski S, Hofmann A, Rühl E. Langmuir, 2006, 22: 5604–5610Google Scholar
  85. 85.
    Raghuwanshi VS, Garusinghe UM, Ilavsky J, Batchelor WJ, Garnier G. Colloid Interface Sci, 2018, 510: 190–198Google Scholar
  86. 86.
    Tiraferri A, Maroni P, Borkovec M. Phys Chem Chem Phys, 2015, 17: 10348–10352Google Scholar
  87. 87.
    Spruijt E, Biesheuvel PM, Vos WM. Phys Rev E, 2015, 91: 012601Google Scholar
  88. 88.
    Danilovtseva EN, Aseyev V, Belozerova OY, Zelinskiy SN, Annenkov VV. Colloid Interface Sci, 2015, 446: 1–10Google Scholar
  89. 89.
    Li Z, Zhang H, Han J, Chen Y, Lin H, Yang T. Adv Mater, 2018, 30: 1706981Google Scholar
  90. 90.
    Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T. Angew Chem Int Ed, 2008, 47: 8438–8441Google Scholar
  91. 91.
    Zhang Y, Shen Y, Teng X, Yan M, Bi H, Morais PC. AC. Appl Mater Interfaces, 2015, 7: 10201–10212Google Scholar
  92. 92.
    You Q, Sun Q, Wang J, Tan X, Pang X, Liu L, Yu M, Tan F, Li N. Nanoscale, 2017, 9: 3784–3796Google Scholar
  93. 93.
    Wang ZM, Wang W, Coombs N, Soheilnia N, Ozin GA. AC. Nano, 2010, 4: 7437–7450Google Scholar
  94. 94.
    Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF. Science, 1993, 261: 1299–1303Google Scholar
  95. 95.
    Firouzi A, Kumar D, Bull LM, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinski JA, Glinka C, Nicol J, Margolese D, Stucky GD, Chmelka BF. Science, 1995, 267: 1138–1143Google Scholar
  96. 96.
    Lee J, Kim J, Kim WJ. Chem Mater, 2016, 28: 6417–6424Google Scholar
  97. 97.
    Haase M, Schäfer H. Angew Chem Int Ed, 2011, 50: 5808–5829Google Scholar
  98. 98.
    Zhou J, Liu Z, Li F. Chem Soc Rev, 2012, 41: 1323–1349Google Scholar
  99. 99.
    Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q, Zhou L, Peng W, Hua Y, Shi J. Biomaterials, 2012, 33: 1079–1089Google Scholar
  100. 100.
    Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, Liu Z. Biomaterials, 2012, 33: 2215–2222Google Scholar
  101. 101.
    Chen C, Kang N, Xu T, Wang D, Ren L, Guo X. Nanoscale, 2015, 7: 5249–5261Google Scholar
  102. 102.
    Yang G, Zhang R, Liang C, Zhao H, Yi X, Shen S, Yang K, Cheng L, Liu Z. Small, 2018, 14: 1702664Google Scholar
  103. 103.
    Gao Z, Liu X, Deng G, Zhou F, Zhang L, Wang Q, Lu J. Dalton Trans, 2016, 45: 13456–13465Google Scholar
  104. 104.
    Chen O, Riedemann L, Etoc F, Herrmann H, Coppey M, Barch M, Farrar CT, Zhao J, Bruns OT, Wei H, Guo P, Cui J, Jensen R, Chen Y, Harris DK, Cordero JM, Wang Z, Jasanoff A, Fukumura D, Reimer R, Dahan M, Jain RK, Bawendi MG. Nat Commun, 2014, 5: 5093Google Scholar
  105. 105.
    Wang J, Liu W, Tu Q, Wang J, Song N, Zhang Y, Nie N, Wang J. Biomacromolecules, 2011, 12: 228–234Google Scholar
  106. 106.
    Huang R, Ke W, Han L, Li J, Liu S, Jiang C. Biomaterials, 2011, 32: 2399–2406Google Scholar
  107. 107.
    Ding H, Inoue S, Ljubimov AV, Patil R, Portilla-Arias J, Hu J, Konda B, Wawrowsky KA, Fujita M, Karabalin N, Sasaki T, Black KL, Holler E, Ljubimova JY. Proc Natl Acad Sci USA, 2010, 107: 18143–18148Google Scholar
  108. 108.
    Debinski W, Gibo DM, Obiri NI, Kealiher A, Puri RK. Nat Biotechnol, 1998, 16: 449–453Google Scholar
  109. 109.
    Wang C, Chen B, Zou M, Cheng G. Colloids Surfs B-Biointerfaces, 2014, 122: 332–340Google Scholar
  110. 110.
    Liu X, Wang Q, Li C, Zou R, Li B, Song G, Xu K, Zheng Y, Hu J. Nanoscale, 2014, 6: 4361–4370Google Scholar
  111. 111.
    Wang L, Lin X, Wang J, Hu Z, Ji Y, Hou S, Zhao Y, Wu X, Chen C. Adv Funct Mater, 2014, 24: 4229–4239Google Scholar
  112. 112.
    Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C. Adv Mater, 2012, 24: 1418–1423Google Scholar
  113. 113.
    Wang L, Liu Y, Li W, Jiang X, Ji Y, Wu X, Xu L, Qiu Y, Zhao K, Wei T, Li Y, Zhao Y, Chen C. Nano Lett, 2011, 11: 772–780Google Scholar
  114. 114.
    Zhang Y, Aslan K, Previte MJR, Geddes CD. Fluoresc, 2007, 17: 345–349Google Scholar
  115. 115.
    Zhang Y, Aslan K, Previte MJR, Geddes CD. Proc Natl Acad Sci USA, 2008, 105: 1798–1802Google Scholar
  116. 116.
    Karolin J, Geddes CD. Phys Chem Chem Phys, 2013, 15: 15740–15745Google Scholar
  117. 117.
    Kochuveedu ST, Kim DH. Nanoscale, 2014, 6: 4966–4984Google Scholar
  118. 118.
    Li Y, Wen T, Zhao R, Liu X, Ji T, Wang H, Shi X, Shi J, Wei J, Zhao Y, Wu X, Nie G. AC. Nano, 2014, 8: 11529–11542Google Scholar
  119. 119.
    Desmettre T, Devoisselle JM, Mordon S. Survey Ophthalmol, 2000, 45: 15–27Google Scholar
  120. 120.
    Holzer W, Mauerer M, Penzkofer A, Szeimies RM, Abels C, Landthaler M, Bäumler W. Photochem Photobiol B-Biol, 1998, 47: 155–164Google Scholar
  121. 121.
    Huang CC, Chang PY, Liu CL, Xu JP, Wu SP, Kuo WC. Nanoscale, 2015, 7: 12689–12697Google Scholar
  122. 122.
    Liu Z, Liu J, Wang R, Du Y, Ren J, Qu X. Biomaterials, 2015, 56: 206–218Google Scholar
  123. 123.
    Lammers T, Koczera P, Fokong S, Gremse F, Ehling J, Vogt M, Pich A, Storm G, van Zandvoort M, Kiessling F. Adv Funct Mater, 2015, 25: 36–43Google Scholar
  124. 124.
    Yang K, Feng L, Shi X, Liu Z. Chem Soc Rev, 2013, 42: 530–547Google Scholar
  125. 125.
    Wang Z, Shao D, Chang Z, Lu M, Wang Y, Yue J, Yang D, Li M, Xu Q, Dong W. AC. Nano, 2017, 11: 12732–12741Google Scholar
  126. 126.
    Wen S, Li K, Cai H, Chen Q, Shen M, Huang Y, Peng C, Hou W, Zhu M, Zhang G, Shi X. Biomaterials, 2013, 34: 1570–1580Google Scholar
  127. 127.
    Zhang J, Li C, Zhang X, Huo S, Jin S, An FF, Wang X, Xue X, Okeke CI, Duan G, Guo F, Zhang X, Hao J, Wang PC, Zhang J, Liang XJ. Biomaterials, 2015, 42: 103–111Google Scholar
  128. 128.
    Dou Y, Guo Y, Li X, Li X, Wang S, Wang L, Lv G, Zhang X, Wang H, Gong X, Chang J. AC. Nano, 2016, 10: 2536–2548Google Scholar
  129. 129.
    Li WP, Liao PY, Su CH, Yeh CS. Am Chem Soc, 2014, 136: 10062–10075Google Scholar
  130. 130.
    Li J, Lyv Z, Li Y, Liu H, Wang J, Zhan W, Chen H, Chen H, Li X. Biomaterials, 2015, 51: 12–21Google Scholar
  131. 131.
    Tang J, Jiang X, Wang L, Zhang H, Hu Z, Liu Y, Wu X, Chen C. Nanoscale, 2014, 6: 3670–3678Google Scholar
  132. 132.
    Miller MA, Zheng YR, Gadde S, Pfirschke C, Zope H, Engblom C, Kohler RH, Iwamoto Y, Yang KS, Askevold B, Kolishetti N, Pittet M, Lippard SJ, Farokhzad OC, Weissleder R. Nat Commun, 2015, 6: 8692Google Scholar
  133. 133.
    Ruan L, Ramezani-Dakhel H, Lee C, Li Y, Duan X, Heinz H, Huang Y. AC. Nano, 2014, 8: 6934–6944Google Scholar
  134. 134.
    Chiu CY, Wu H, Yao Z, Zhou F, Zhang H, Ozolins V, Huang Y. Am Chem Soc, 2013, 135: 15489–15500Google Scholar
  135. 135.
    Xu X, Zhang X, Sun H, Yang Y, Dai X, Gao J, Li X, Zhang P, Wang HH, Yu NF, Sun SG. Angew Chem, 2014, 126: 12730–12735Google Scholar
  136. 136.
    Zhao L, Ge X, Yan G, Wang X, Hu P, Shi L, Wolfbeis OS, Zhang H, Sun L. Nanoscale, 2017, 9: 16012–16023Google Scholar
  137. 137.
    Fan W, Bu W, Zhang Z, Shen B, Zhang H, He Q, Ni D, Cui Z, Zhao K, Bu J, Du J, Liu J, Shi J. Angew Chem Int Ed, 2015, 54: 14026–14030Google Scholar
  138. 138.
    Liu Y, Liu Y, Bu W, Xiao Q, Sun Y, Zhao K, Fan W, Liu J, Shi J. Biomaterials, 2015, 49: 1–8Google Scholar
  139. 139.
    Brown JM. Cancer Biol Ther, 2002, 1: 453–458Google Scholar
  140. 140.
    Thews O, Wolloscheck T, Dillenburg W, Kraus S, Kelleher DK, Konerding MA, Vaupel P. Br J Cancer, 2004, 91: 1181–1189Google Scholar
  141. 141.
    Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. Nat Med, 2012, 18: 1580–1585Google Scholar
  142. 142.
    Wang C, Tao H, Cheng L, Liu Z. Biomaterials, 2011, 32: 6145–6154Google Scholar
  143. 143.
    Liu J, Bu W, Pan L, Shi J. Angew Chem Int Ed, 2013, 52: 4375–4379Google Scholar
  144. 144.
    Cho S, Park W, Kim DH. AC. Appl Mater Interfaces, 2017, 9: 101–111Google Scholar
  145. 145.
    Mekaru H, Lu J, Tamanoi F. Adv Drug Deliver Rev, 2015, 95: 40–49Google Scholar
  146. 146.
    He Q, Zhang Z, Gao F, Li Y, Shi J. Small, 2011, 7: 271–280Google Scholar
  147. 147.
    Chen Y, Meng Q, Wu M, Wang S, Xu P, Chen H, Li Y, Zhang L, Wang L, Shi J. Am Chem Soc, 2014, 136: 16326–16334Google Scholar
  148. 148.
    Li Z, Han J, Yu L, Qian X, Xing H, Lin H, Wu M, Yang T, Chen Y. Adv Funct Mater, 2018, 28: 1800145Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
  2. 2.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations