Advertisement

Science China Chemistry

, Volume 61, Issue 8, pp 909–924 | Cite as

Synthesis and electronic properties of expanded 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxalines with AIE characteristics

  • Franziska K. Merkt
  • Thomas J. J. Müller
Articles

Abstract

Expanded 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxaline dyes with variable substitution pattern on the peripheral thiophene ring were synthesized in moderate to very good yields by Suzuki and Buchwald-Hartwig coupling of the corresponding brominated 3-ethynyl quinoxalines. Dumbbell-shaped bis(thienyl 3-ethynyl quinoxalines) are also accessible by the Suzuki protocol. The photophysical properties were investigated by UV and fluorescence spectroscopy. Most of the obtained compounds display fluorescence in solution and some of them also in the solid state. Additionally, tuning of the emission color of the quinoxaline based chromophores can be conveniently accomplished by the remote substituent group. The determined absorption and emission maximum as well as the Stokes shifts strongly correlate with Hammett σp+ parameters. Besides, photophysical properties of selected derivatives in the solid state, biphasic solutions, and PMMA films, along with their relationships, are comparatively investigated. Moreover, two 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxaline dyes are aggregation induced emission (AIE) chromophores indicated by restriction of molecular motions. A covalently restricted 3-ethynyl quinoxaline supports that the inhibition of molecular rotation is responsible for the significant enhancement of fluorescence in acetonitrile/water mixtures.

Keywords

absorption aggregation induced emission cross-coupling fluorescence heterocycles palladium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Fonds der Chemischen Industrie and Deutsche Forschungsgemeinschaft (Mu 1088/9-1). We cordially thank Tobias Wilcke (Heinrich-Heine-Universität Düsseldorf) for taking the photographs for the graphical abstract.

Supplementary material

11426_2018_9295_MOESM1_ESM.pdf (4.2 mb)
Synthesis and Electronic Properties of Expanded 5-(Hetero)Aryl-Thien-2-yl Substituted 3-Ethynyl Quinoxalines with AIE Characteristics

References

  1. 1(a).
    Wei M, Gao Y, Li X, Serpe MJ. Polym Chem, 2017, 8: 127–143CrossRefGoogle Scholar
  2. (b).
    Kobayashi A, Kato M. Chem Lett, 2017, 46: 154–162CrossRefGoogle Scholar
  3. (c).
    Hu R, Kang Y, Tang BZ. Polym J, 2016, 48: 359–370CrossRefGoogle Scholar
  4. (d).
    Mukherjee S, Thilagar P. J Mater Chem C, 2016, 4: 2647–2662CrossRefGoogle Scholar
  5. (e).
    Cariati E, Lucenti E, Botta C, Giovanella U, Marinotto D, Righetto S. Coordin Chem Rev, 2016, 306: 566–614CrossRefGoogle Scholar
  6. (f).
    Roy D, Cambre JN, Sumerlin BS. Prog Polym Sci, 2010, 35: 278–301CrossRefGoogle Scholar
  7. 2.
    Tang CW, VanSlyke SA. Appl Phys Lett, 1987, 51: 913–915CrossRefGoogle Scholar
  8. 3.
    Grimsdale AC, Leok Chan K, Martin RE, Jokisz PG, Holmes AB. Chem Rev, 2009, 109: 897–1091CrossRefPubMedGoogle Scholar
  9. 4.
    Pei K, Wu Y, Islam A, Zhu S, Han L, Geng Z, Zhu W. J Phys Chem C, 2014, 118: 16552–16561CrossRefGoogle Scholar
  10. 5.
    Shaikh AM, Sharma BK, Chacko S, Kamble RM. RSC Adv, 2016, 6: 60084–60093CrossRefGoogle Scholar
  11. 6.
    Feng HT, Zheng X, Gu X, Chen M, Lam JWY, Huang X, Tang BZ. Chem Mater, 2018, 30: 1285–1290CrossRefGoogle Scholar
  12. 7.
    Pei K, Wu Y, Wu W, Zhang Q, Chen B, Tian H, Zhu W. Chem Eur J, 2012, 18: 8190–8200CrossRefPubMedGoogle Scholar
  13. 8(a).
    Zhao X, Zhan X. Chem Soc Rev, 2011, 40: 3728–3743CrossRefPubMedGoogle Scholar
  14. (b).
    Shirota Y, Kageyama H. Chem Rev, 2007, 107: 953–1010CrossRefPubMedGoogle Scholar
  15. (c).
    Hughes G, Bryce MR. J Mater Chem, 2005, 15: 94–107CrossRefGoogle Scholar
  16. (d).
    Kulkarni AP, Tonzola CJ, Babel A, Jenekhe SA. Chem Mater, 2004, 16: 4556–4573CrossRefGoogle Scholar
  17. 9(a).
    Gers-Panther CF, Fischer H, Nordmann J, Seiler T, Behnke T, Würth C, Frank W, Resch-Genger U, Müller TJJ. J Org Chem, 2017, 82: 567–578CrossRefPubMedGoogle Scholar
  18. (b).
    Hauck M, Stolte M, Schönhaber J, Kuball HG, Müller TJJ. Chem Eur J, 2011, 17: 9984–9998CrossRefPubMedGoogle Scholar
  19. 10.
    Li S, Yuan N, Fang Y, Chen C, Wang L, Feng R, Zhao Y, Cui H, Wang X. J Org Chem, 2018, 83: 3651–3656CrossRefPubMedGoogle Scholar
  20. 11.
    Shi J, Aguilar Suarez LE, Yoon SJ, Varghese S, Serpa C, Park SY, Lüer L, Roca-Sanjuán D, Milián-Medina B, Gierschner J. J Phys Chem C, 2017, 121: 23166–23183CrossRefGoogle Scholar
  21. 12(a).
    Hong Y, Lam JWY, Tang BZ. Chem Commun, 2009, 1: 4332CrossRefGoogle Scholar
  22. (b).
    Hong Y, Lam JWY, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388CrossRefPubMedGoogle Scholar
  23. (c).
    Hu R, Leung NLC, Tang BZ. Chem Soc Rev, 2014, 43: 4494–4562CrossRefPubMedGoogle Scholar
  24. (d).
    Mazumdar P, Maity S, Shyamal M, Das D, Sahoo GP, Misra A. Phys Chem Chem Phys, 2016, 18: 7055–7067CrossRefPubMedGoogle Scholar
  25. 13.
    Chen J, Law CCW, Lam JWY, Dong Y, Lo SMF, Williams ID, Zhu D, Tang BZ. Chem Mater, 2003, 15: 1535–1546CrossRefGoogle Scholar
  26. 14(a).
    Levi L, Müller TJJ. Chem Soc Rev, 2016, 45: 2825–2846CrossRefPubMedGoogle Scholar
  27. (b).
    Müller TJJ, D’Souza DM. Pure Appl Chem, 2008, 80: 609–620CrossRefGoogle Scholar
  28. 15.
    Levi L, Müller TJJ. Eur J Org Chem, 2016, 2016: 2902–2918Google Scholar
  29. 16.
    Müller TJJ. Multicomponent and domino syntheses of AIE chromophores. In: Fujiki M, Tang BZ, Liu B, Eds. Aggregation Induced Emission: Materials and Applications. New York: ACS Symposium Series e-book, 2016. 85–112CrossRefGoogle Scholar
  30. 17.
    Merkt FK, Höwedes SP, Gers-Panther CF, Gruber I, Janiak C, Müller TJJ. Chem Eur J, 2018, 24: 8114–8125CrossRefPubMedGoogle Scholar
  31. 18.
    Merkul E, Dohe J, Gers C, Rominger F, Müller TJJ. Angew Chem Int Ed, 2011, 50: 2966–2969CrossRefGoogle Scholar
  32. 19.
    Zanello P. Electrochemical and X-ray structural aspects of transition metal complexes containing redox-active ferrocene ligands. In: Togni AT, Hayashi T, Eds. Ferrocenes. Weinheim: VCH, 1995. 317–430Google Scholar
  33. 20.
    Unterhalt B, Gores P. Arch Pharm Pharm Med Chem, 1989, 322: 839–840CrossRefGoogle Scholar
  34. 21.
    Gers CF, Nordmann J, Kumru C, Frank W, Müller TJJ. J Org Chem, 2014, 79: 3296–3310CrossRefPubMedGoogle Scholar
  35. 22(a).
    Miyaura N, Suzuki A. Chem Rev, 1995, 95: 2457–2483CrossRefGoogle Scholar
  36. (b).
    Suzuki A. J Organomet Chem, 1999, 576: 147–168CrossRefGoogle Scholar
  37. (c).
    Phan N, Van Der Sluys M, Jones C. Adv Synth Catal, 2006, 348: 609–679CrossRefGoogle Scholar
  38. 23(a).
    Guram AS, Rennels RA, Buchwald SL. Angew Chem Int Ed, 1995, 34: 1348–1350CrossRefGoogle Scholar
  39. (b).
    Louie J, Hartwig JF. Tetrahedron Lett, 1995, 36: 3609–3612CrossRefGoogle Scholar
  40. (c).
    Paul F, Patt J, Hartwig JF. Organometallics, 1995, 14: 3030–3039CrossRefGoogle Scholar
  41. 24(a).
    Achelle S, Baudequin C, Plé N. Dyes Pigments, 2013, 98: 575–600CrossRefGoogle Scholar
  42. (b).
    Achelle S, Barsella A, Baudequin C, Caro B, Robin-le Guen F. J Org Chem, 2012, 77: 4087–4096CrossRefPubMedGoogle Scholar
  43. (c).
    Wang H, Chen G, Liu Y, Hu L, Xu X, Ji S. Dyes Pigments, 2009, 83: 269–275CrossRefGoogle Scholar
  44. (d).
    Thomas KJR, Lin JT, Tao YT, Chuen CH. Chem Mater, 2002, 14: 2796–2802CrossRefGoogle Scholar
  45. (e).
    Shen C, Wu Y, Zhang W, Jiang H, Zhang H, Li E, Chen B, Duan X, Zhu WH. Dyes Pigments, 2018, 149: 65–72CrossRefGoogle Scholar
  46. 25(a).
    Rurack K, Spieles M. Anal Chem, 2011, 83: 1232–1242CrossRefPubMedGoogle Scholar
  47. (b).
    Boens N, Qin W, Basaric N, Hofkens J, Ameloot M, Pouget J, Lefèvre JP, Valeur B, Gratton E, vandeVen M, Silva ND, Engelborghs Y, Willaert K, Sillen A, Rumbles G, Phillips D, Visser AJWG, van Hoek A, Lakowicz JR, Malak H, Gryczynski I, Szabo AG, Krajcarski DT, Tamai N, Miura A. Anal Chem, 2007, 79: 2137–2149CrossRefPubMedGoogle Scholar
  48. 26(a).
    Drake JM, Lesiecki ML, Camaioni DM. Chem Phys Lett, 1985, 113: 530–534CrossRefGoogle Scholar
  49. (b).
    Meyer M, Mialocq JC, Perly B. J Phys Chem, 1990, 94: 98–104CrossRefGoogle Scholar
  50. 27.
    Fery-Forgues S, Lavabre D. J Chem Educ, 1999, 76: 1260–1264CrossRefGoogle Scholar
  51. 28(a).
    Hansch C, Leo A, Taft RW. Chem Rev, 1991, 91: 165–195CrossRefGoogle Scholar
  52. (b).
    Hammett LP. Chem Rev, 1935, 17: 125–136CrossRefGoogle Scholar
  53. 29(a).
    Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR. Nature, 1998, 395: 151–154CrossRefGoogle Scholar
  54. (b).
    Baldo MA, Thompson ME, Forrest SR. Nature, 2000, 403: 750–753CrossRefPubMedGoogle Scholar
  55. 30.
    Lakowicz JR. Principles of Fluorescence Spectroscopy. 3rd ed. Berlin/Heidelberg: Springer, 2006. 687–688CrossRefGoogle Scholar
  56. 31.
    Franz AW, Popa LN, Rominger F, Müller TJJ. Org Biomol Chem, 2009, 7: 469–475CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Organic Chemistry and Macromolecular ChemistryHeinrich Heine University DüsseldorfDüsseldorfGermany

Personalised recommendations