Advertisement

Metal-free visible-light-mediated aerobic oxidation of silanes to silanols

  • Jing Wang
  • Bin Li
  • Li-Chuan Liu
  • Chenran Jiang
  • Tao He
  • Wei He
Articles
  • 16 Downloads

Abstract

Oxidation of silanes into silanols using water/air has attracted considerable attention. The known methods with no exception required a metal catalyst. Herein we report the first metal-free method: 2 mol% Rose Bengal as the catalyst, air (O2) as the oxidant, water as the additive and under visible light irradiation. While this method produces various silanols in a simple, cost-effective, efficient (92%–99% yields) and scalable fashion, its reaction mechanism is very different than the reported ones associated with metal catalysis.

Keywords

metal-free photoredox aerobic oxidation silanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0505200) and the National Natural Science Foundation of China (21625104, 21521091).

Supplementary material

11426_2018_9289_MOESM1_ESM.pdf (1.8 mb)
Supplementary material, approximately 1849 KB.

References

  1. 1.
    (a) Ciamician G. Science 1912, 36: 385–394CrossRefGoogle Scholar
  2. (b).
    Narayanam JMR, Stephenson CRJ. Chem Soc Rev 2011, 40: 102–113CrossRefGoogle Scholar
  3. (c).
    Chen JR, Hu XQ, Lu LQ, Xiao WJ. Chem Soc Rev 2016, 45: 2044–2056CrossRefGoogle Scholar
  4. (d).
    Lang X, Zhao J, Chen X. Chem Soc Rev 2016, 45: 3026–3038CrossRefGoogle Scholar
  5. (e).
    Fabry DC, Rueping M. Acc Chem Res 2016, 49: 1969–1979CrossRefGoogle Scholar
  6. 2.
    (a) Nicewicz DA, MacMillan DWC. Science 2008, 322: 77–80CrossRefGoogle Scholar
  7. (b).
    Feng Z, Zeng T, Xuan J, Liu Y, Lu L, Xiao WJ. Sci China Chem 2016, 59: 171–174CrossRefGoogle Scholar
  8. (c).
    Prier CK, Rankic DA, MacMillan DWC. Chem Rev 2013, 113: 5322–5363CrossRefGoogle Scholar
  9. (d).
    Wang J, Nguyen TH, Zheng N. Sci China Chem 2016, 59: 180–183CrossRefGoogle Scholar
  10. (e).
    Zhao J, Wu W, Sun J, Guo S. Chem Soc Rev 2013, 42: 5323–5351CrossRefGoogle Scholar
  11. (f).
    Liu Y, Song RJ, Li JH. Sci China Chem 2016, 59: 161–170CrossRefGoogle Scholar
  12. (g).
    Zeitler K. Angew Chem Int Ed 2009, 48: 9785–9789CrossRefGoogle Scholar
  13. (h).
    Ye P, Wang DH, Chen B, Meng QY, Tung CH, Wu LZ. Sci China Chem 2016, 59: 175–179CrossRefGoogle Scholar
  14. (i).
    Majek M, Jacobi vo. Wangelin A. Acc Chem Res 2016, 49: 2316–2327CrossRefGoogle Scholar
  15. (j).
    Margrey KA, Nicewicz DA. Acc Chem Res 2016, 49: 1997–2006CrossRefGoogle Scholar
  16. (k).
    Ravelli D, Fagnoni M, Albini A. Chem Soc Rev 2013, 42: 97–113CrossRefGoogle Scholar
  17. (l).
    Hari DP, Schroll P, König B. Am Chem Soc 2012, 134: 2958–2961CrossRefGoogle Scholar
  18. (m).
    Meyer AU, Slanina T, Yao CJ, König B. AC. Catal 2016, 6: 369–375CrossRefGoogle Scholar
  19. (n).
    Yang W, Yang S, Li P, Wang L. Chem Commun 2015, 51: 7520–7523CrossRefGoogle Scholar
  20. (o).
    Liu M, Li Y, Yu L, Xu Q, Jiang X. Sci China Chem 2018, 61: 294–299CrossRefGoogle Scholar
  21. 3.
    (a) Chandrasekhar V, Boomishankar R, Nagendran S. Chem Rev 2004, 104: 5847–5910CrossRefGoogle Scholar
  22. (b).
    Murugavel R, Voigt A, Walawalkar MG, Roesky HW. Chem Rev 1996, 96: 2205–2236CrossRefGoogle Scholar
  23. (c).
    Denmark SE. Regens CS. AcChem Res 2008, 41: 1486–1499CrossRefGoogle Scholar
  24. (d).
    Murugavel R, Voigt A, Walawalkar MG, Roesky HW. Chem Rev 1996, 96: 2205–2236CrossRefGoogle Scholar
  25. 4.
    (a) Denmark S E, MH Ober. Aldrichim Acta 2003, 36: 75–85Google Scholar
  26. (b).
    Denmark SE, Regens CS. Acc Chem Res 2008, 41: 1486–1499CrossRefGoogle Scholar
  27. (c).
    Denmark SE. Org Chem 2009, 74: 2915–2927CrossRefGoogle Scholar
  28. 5.
    (a) Tran NT, Min T, Franz AK. Chem Eur J 2011, 17: 9897–9900CrossRefGoogle Scholar
  29. (b).
    Schafer AG, Wieting JM, Mattson AE. Org Lett 2011, 13: 5228–5231CrossRefGoogle Scholar
  30. (c).
    Tran NT, Wilson SO, Franz AK. Org Lett 2012, 14: 186–189CrossRefGoogle Scholar
  31. 6.
    (a) Mewald M, Schiffner JA, Oestreich M. Angew Chem Int Ed 2012, 51: 1763–1765CrossRefGoogle Scholar
  32. (b).
    Mewald M, Schiffner JA, Oestreich M. Angew Chem 2012, 124: 1797–1799CrossRefGoogle Scholar
  33. (c).
    Wang C, Ge H. Chem Eur J 2011, 17: 14371–14374CrossRefGoogle Scholar
  34. (d).
    Huang C, Chattopadhyay B, Gevorgyan V. Am Chem Soc 2011, 133: 12406–12409CrossRefGoogle Scholar
  35. (e).
    Huang C, Ghavtadze N, Chattopadhyay B, Gevorgyan V. Am Chem Soc 2011, 133: 17630–17633CrossRefGoogle Scholar
  36. 7.
    Franz AK, Wilson SO. Med Chem 2013, 56: 388–405CrossRefGoogle Scholar
  37. 8.
    (a) Tacke R, Schmid T, Hofmann M, Tolasch T, Francke W. Organometallics 2003, 22: 370–372CrossRefGoogle Scholar
  38. (b).
    Kim JK, Sieburth SMN. Org Chem 2012, 77: 2901–2906CrossRefGoogle Scholar
  39. 9.
    (a) Cella JA, Carpenter JC. J Organomet Chem 1994, 480: 23–26CrossRefGoogle Scholar
  40. (b).
    Cho HM, Jeon SH, Lee HK, Kim JH, Park S, Choi MG, Lee ME. Organomet Chem 2004, 689: 471–477CrossRefGoogle Scholar
  41. 10.
    Sieburth SM, Mu W. Org Chem 1993, 58: 7584–7586CrossRefGoogle Scholar
  42. 11.
    (a) Adam W, Mello R, Curci R. Angew Chem Int Ed 1990, 29: 890–891CrossRefGoogle Scholar
  43. (b).
    Adam W, Mello R, Curci R. Angew Chem 1990, 102: 916–917CrossRefGoogle Scholar
  44. (c).
    Grabovskii SA, Kabal'nova NN, Shereshovets VV, Chatgilialoglu C. Organometallics 2002, 21: 3506–3510CrossRefGoogle Scholar
  45. (d).
    Asao N, Ishikawa Y, Hatakeyama N, Menggenbateer N, Yamamoto Y, Chen M, Zhang W, Inoue A. Angew Chem Int Ed 2010, 49: 10093–10095CrossRefGoogle Scholar
  46. (e).
    Asao N, Ishikawa Y, Hatakeyama N, Menggenbateer N, Yamamoto Y, Chen M, Zhang W, Inoue A. Angew Chem 2010, 122: 10291–10293CrossRefGoogle Scholar
  47. (f).
    Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Chem Commun 2009, 109: 5302–5304eCrossRefGoogle Scholar
  48. (g).
    Ishimoto R, Kamata K, Mizuno N. Angew Chem Int Ed 2009, 48: 8900–8904CrossRefGoogle Scholar
  49. (h).
    Ishimoto R, Kamata K, Mizuno N. Angew Chem 2009, 121: 9062–9066CrossRefGoogle Scholar
  50. (i).
    Chen Z, Zhang Q, Chen W, Dong J, Yao H, Zhang X, Tong X, Wang D, Peng Q, Chen C, He W, Li Y. Adv Mater 2018, 30: 1704720CrossRefGoogle Scholar
  51. (j).
    Jeon M, Han J, Park J. AC. Catal 2012, 2: 1539–1549Google Scholar
  52. 12.
    Yu M, Jing H, Liu X, Fu X. Organometallics 2015, 34: 5754–5758CrossRefGoogle Scholar
  53. 13.
    (a) Shen ZC, Yang P, Tang Y. J Org Chem 2016, 81: 309–317CrossRefGoogle Scholar
  54. (b).
    Zhang MJ, Schroeder GM, He YH, Guan Z. RS. Adv 2016, 6: 96693–96699CrossRefGoogle Scholar
  55. (c).
    Fan W, Yang Q, Xu F, Li P. Org Chem 2014, 79: 10588–10592CrossRefGoogle Scholar
  56. (d).
    Li X, Gu X, Li Y, Li P. AC. Catal 2014, 4: 1897–1900CrossRefGoogle Scholar
  57. (e).
    Shi Q, Li P, Zhu X, Wang L. Green Chem 2016, 18: 4916–4923CrossRefGoogle Scholar
  58. (f).
    Ghogare AA, Greer A. Chem Rev 2016, 116: 9994–10034CrossRefGoogle Scholar
  59. (g).
    Sun JG, Yang H, Li P, Zhang B. Org Lett 2016, 18: 5114–5117CrossRefGoogle Scholar
  60. 14.
    Tung CH, Wu LZ, Zhang LP, Chen B. Acc Chem Res 2003, 36: 39–47CrossRefGoogle Scholar
  61. 15.
    (a) Donkers RL, Workentin MS. J Am Chem Soc 2004, 126: 1688–1698CrossRefGoogle Scholar
  62. (b).
    Kotani H, Ohkubo K, Fukuzumi S. Am Chem Soc 2004, 126: 15999–16006CrossRefGoogle Scholar
  63. (c).
    Carreño MC, González-López M, Urbano A. Angew Chem Int Ed 2006, 45: 2737–2741CrossRefGoogle Scholar
  64. (d).
    Ange. Chem 2006, 113: 2803–2807Google Scholar
  65. (e).
    Catir M, Kilic H, Nardello-Rataj V, Aubry JM, Kazaz C. Org Chem 2009, 74: 4560–4564CrossRefGoogle Scholar
  66. (f).
    Ouannes C, Wilson T. Am Chem Soc 1968, 90: 6527–6528CrossRefGoogle Scholar
  67. (g).
    Kotani H, Ohkubo K, Fukuzumi S. Am Chem Soc 2004, 126: 15999–16006CrossRefGoogle Scholar
  68. (h).
    Klaper M, Linker T. Am Chem Soc 2015, 137: 13744–13747CrossRefGoogle Scholar
  69. 16.
    (a) Cui H, Wei W, Yang D, Zhang Y, Zhao H, Wang L, Wang H. Green Chem 2017, 19: 3520–3524CrossRefGoogle Scholar
  70. (b).
    Rahaman R, Das S, Barman P. Green Chem 2018, 20: 141–147CrossRefGoogle Scholar
  71. 17.
    (a) Mader MM, Norrby PO. J Am Chem Soc 2001, 123: 1970–1976CrossRefGoogle Scholar
  72. (b).
    Rayment EJ, Mekareeya A, Summerhill N, Anderson EA. Am Chem Soc 2017, 139: 6138–6145CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jing Wang
    • 1
  • Bin Li
    • 1
  • Li-Chuan Liu
    • 1
  • Chenran Jiang
    • 1
  • Tao He
    • 1
  • Wei He
    • 1
  1. 1.School of Pharmaceutical SciencesTsinghua UniversityBeijingChina

Personalised recommendations