Science China Chemistry

, Volume 61, Issue 8, pp 892–897 | Cite as

Multiplexed imaging detection of live cell intracellular changes in early apoptosis with aggregation-induced emission fluorogens

  • Yabin Zhou
  • Haixiang Liu
  • Na Zhao
  • Zhiming Wang
  • Michael Z. Michael
  • Ni Xie
  • Ben Zhong TangEmail author
  • Youhong TangEmail author


Apoptosis is an important process for maintaining tissue homeostasis and eliminating abnormal cells in multicellular organisms. Abnormality in apoptosis often leads to severe diseases such as cancers. Better understanding of its mechanisms and processes is therefore important. Accompanying molecular biology events of apoptosis is a series of cellular morphology changes: nucleus condensation, cell shrinkage and rounding, cell surface blebbing, dynamic blebbing, apoptotic membrane protrusions and nucleus fragmentations and finally, the formation and release of apoptotic bodies. It is difficult to detect cellular changes in the early phase of apoptosis due to the subtle changes at this phase. In the current study, we induced apoptosis in HeLa cells with H2O2 and used nuclear dye Hoechst 33258, mitochondria, lysosome and cytoplasmic protein specific aggregation-induced emission fluorogens (AIEgens), TPE-Ph-In, 2M-DABS and BSPOTPE to successfully perform live cell multiplexed imaging to investigate early apoptosis cellular events. We showed the gradual dissipation of mitochondria membrane potential until it is nondetectable by TPE-Ph-In. Increased mitophagy detected by TPE-Ph-In and 2M-DABS, condensed nucleus detected by Hoechst 33258, increased permeability and/or reduced integrity of nuclear membrane, and increased intracellular vesicles detected by 2M-DABS are some of the early events of apoptosis.


apoptosis multiplexed imaging HeLa aggregation-induced emission fluorogens (AIEgens) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Hong Kong Branch of Chinese National Engineering Research Centres for Tissue Restoration and Reconstruction. We acknowledged the use of South Australian nodes of the Australian Microscopy & Microanalysis Research Facility and the Australian National Fabrication Facility at Flinders University.

Supplementary material

11426_2018_9287_MOESM1_ESM.docx (1.7 mb)
Multiplexed imaging detection of live cell intracellular changes in early apoptosis with aggregation-induced emission fluorogens


  1. 1.
    Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 6th ed. New York: Garland Science, 2015. 2Google Scholar
  2. 2.
    Karam JA. Apoptosis in Carcinogenesis and Chemotherapy. Berlin: Springer, 2009Google Scholar
  3. 3.
    Slattery ML, Mullany LE, Sakoda LC, Wolff RK, Samowitz WS, Herrick JS. Apoptosis, 2018, 23: 237–250CrossRefGoogle Scholar
  4. 4.
    Fuchs Y, Steller H. Cell, 2011, 147: 742–758CrossRefGoogle Scholar
  5. 5.
    McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, San Chin H, Lane RM, Dramicanin M, Saunders TL, Sugiana C, Lessene R, Osellame LD, Chew TL, Dewson G, Lazarou M, Ramm G, Lessene G, Ryan MT, Rogers KL, van Delft MF, Kile BT. Science, 2018, 359: eaao6047CrossRefGoogle Scholar
  6. 6.
    Shi Y. Methods Enzymol, 2008, 442: 141–156CrossRefGoogle Scholar
  7. 7.
    Tinari A, Giammarioli AM, Manganelli V, Ciarlo L, Malorni W. Methods Enzymol, 2008, 442: 1–26CrossRefGoogle Scholar
  8. 8.
    Tixeira R, Caruso S, Paone S, Baxter AA, Atkin-Smith GK, Hulett MD, Poon IKH. Apoptosis, 2017, 22: 475–477CrossRefGoogle Scholar
  9. 9.
    Atkin-Smith GK, Paone S, Zanker DJ, Duan M, Phan TK, Chen W, Hulett MD, Poon IKH. Sci Rep, 2017, 7: 39846CrossRefGoogle Scholar
  10. 10.
    Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Nat Cell Biol, 2001, 3: 339–345CrossRefGoogle Scholar
  11. 11.
    Wickman G, Julian L, Olson MF. Cell Death Differ, 2012, 19: 735–742CrossRefGoogle Scholar
  12. 12.
    Banfalvi G. Apoptosis, 2017, 22: 306–323CrossRefGoogle Scholar
  13. 13.
    Chernyak BV, Izyumov DS, Lyamzaev KG, Pashkovskaya AA, Pletjushkina OY, Antonenko YN, Sakharov DV, Wirtz KWA, Skulachev VP. Biochim Biophys Acta, 2006, 1757: 525–534CrossRefGoogle Scholar
  14. 14.
    Singh M, Sharma H, Singh N. Mitochondrion, 2007, 7: 367–373CrossRefGoogle Scholar
  15. 15.
    Li Y, Wu Y, Chang J, Chen M, Liu R, Li F. Chem Commun, 2013, 49: 11335CrossRefGoogle Scholar
  16. 16.
    Zhao N, Chen S, Hong Y, Tang BZ. Chem Commun, 2015, 51: 13599–13602CrossRefGoogle Scholar
  17. 17.
    Yu CYY, Zhang W, Kwok RTK, Leung CWT, Lam JWY, Tang BZ. J Mater Chem B, 2016, 4: 2614–2619CrossRefGoogle Scholar
  18. 18.
    Cheng Y, Dai J, Sun C, Liu R, Zhai T, Lou X, Xia F. Angew Chem Int Ed, 2018, 57: 3123–3127CrossRefGoogle Scholar
  19. 19.
    Cheng Y, Sun C, Ou X, Liu B, Lou X, Xia F. Chem Sci, 2017, 8: 4571–4578CrossRefGoogle Scholar
  20. 20.
    Cheng Y, Huang F, Min X, Gao P, Zhang T, Li X, Liu B, Hong Y, Lou X, Xia F. Anal Chem, 2016, 88: 8913–8919CrossRefGoogle Scholar
  21. 21.
    Xu X, Huang J, Li J, Yan J, Qin J, Li Z. Chem Commun, 2011, 47: 12385–12387CrossRefGoogle Scholar
  22. 22.
    Li Q, Li Z. Sci China Chem, 2015, 58: 1800–1809CrossRefGoogle Scholar
  23. 23.
    Liang J, Feng G, Kwok RTK, Ding D, Tang B, Liu B. Sci China Chem, 2016, 59: 53–61CrossRefGoogle Scholar
  24. 24.
    Nilsson C, Kågedal K, Johansson U, Öllinger K. Methods Cell Sci, 2003, 25: 185–194CrossRefGoogle Scholar
  25. 25.
    Tong H, Hong Y, Dong Y, Häussler M, Li Z, Lam JWY, Dong Y, Sung HHY, Williams ID, Tang BZ. J Phys Chem B, 2007, 111: 11817–11823CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yabin Zhou
    • 1
    • 2
    • 3
  • Haixiang Liu
    • 2
  • Na Zhao
    • 2
  • Zhiming Wang
    • 2
  • Michael Z. Michael
    • 4
  • Ni Xie
    • 5
  • Ben Zhong Tang
    • 2
    Email author
  • Youhong Tang
    • 3
    Email author
  1. 1.Faculty of Biological EngineeringSichuan University of Science and EngineeringZigongChina
  2. 2.Department of Chemistrythe Hong Kong University of Science and TechnologyHong KongChina
  3. 3.Centre for NanoScale Science and Technology, College of Science and EngineeringFlinders UniversityAdelaideAustralia
  4. 4.Department of Gastroenterology and Hepatology, Flinders Centre for Innovation in CancerFlinders UniversityAdelaideAustralia
  5. 5.AIEgen Biotech Co.LimitedHong KongChina

Personalised recommendations