Advertisement

Science China Chemistry

, Volume 61, Issue 9, pp 1088–1098 | Cite as

Applications of CBT-Cys click reaction: past, present, and future

  • Miaomiao Zhang
  • Gaolin Liang
Reviews
  • 67 Downloads

Abstract

Herein, we review the development, applications and potential prospects of CBT-Cys click reaction. This click condensation reaction is based on the condensation reaction between 2-cyanobenzothiazole (CBT) and D-cysteine (D-Cys) in fireflies and has high biocompatibility and controllability in physiological solutions. Under the control of pH, reduction, or enzyme, this CBT-based click reaction has been widely applied to a wide range of biomedical fields such as protein labeling, molecular imaging (e. g., optical imaging, nuclear imaging, magnetic resonance imaging and photoacoustic imaging), nanomaterial fabrication, cancer therapy, and other potentialities.

Keywords

CBT-Cys click reaction self-assembly disassembly molecular imaging cancer therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2016YFA0400904), the National Natural Science Foundation of China (21725505, 21675145), and the Major program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXZY006).

References

  1. 1.
    Kolb HC, Finn MG, Sharpless KB. Angew Chem Int Ed, 2001, 40: 2004–2021CrossRefGoogle Scholar
  2. 2.
    Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. J Am Chem Soc, 2003, 125: 3192–3193CrossRefPubMedGoogle Scholar
  3. 3.
    Agard NJ, Prescher JA, Bertozzi CR. J Am Chem Soc, 2004, 126: 15046–15047CrossRefPubMedGoogle Scholar
  4. 4.
    Speers AE, Adam GC, Cravatt BF. J Am Chem Soc, 2003, 125: 4686–4687CrossRefPubMedGoogle Scholar
  5. 5.
    White EH, McCapra F, Field GF. J Am Chem Soc, 1963, 85: 337–343CrossRefGoogle Scholar
  6. 6.
    Liang G, Ren H, Rao J. Nat Chem, 2010, 2: 54–60CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Proc Natl Acad Sci USA, 2007, 104: 16793–16797CrossRefPubMedGoogle Scholar
  8. 8.
    Yuan Y, Liang G. Org Biomol Chem, 2014, 12: 865–871CrossRefPubMedGoogle Scholar
  9. 9.
    Zheng Z, Chen P, Li G, Zhu Y, Shi Z, Luo Y, Zhao C, Fu Z, Cui X, Ji C, Wang F, Huang G, Liang G. Chem Sci, 2017, 8: 214–222CrossRefPubMedGoogle Scholar
  10. 10.
    Pipes GD, Kosky AA, Abel J, Zhang Y, Treuheit MJ, Kleemann GR. Pharm Res, 2005, 22: 1059–1068CrossRefPubMedGoogle Scholar
  11. 11.
    Ren H, Xiao F, Zhan K, Kim YP, Xie H, Xia Z, Rao J. Angew Chem Int Ed, 2009, 48: 9658–9662CrossRefGoogle Scholar
  12. 12.
    Wang X, Li Q, Yuan Y, Mei B, Huang R, Tian Y, Sun J, Cao C, Lu G, Liang G. Org Biomol Chem, 2012, 10: 8082–8086CrossRefPubMedGoogle Scholar
  13. 13.
    Yuan Y, Wang X, Mei B, Zhang D, Tang A, An L, He X, Jiang J, Liang G. Sci Rep, 2013, 3: 3523CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nguyen DP, Elliott T, Holt M, Muir TW, Chin JW. J Am Chem Soc, 2011, 133: 11418–11421CrossRefPubMedGoogle Scholar
  15. 15.
    Kilpatrick LE, Friedman-Ohana R, Alcobia DC, Riching K, Peach CJ, Wheal AJ, Briddon SJ, Robers MB, Zimmerman K, Machleidt T, Wood KV, Woolard J, Hill SJ. Biochem Pharmacol, 2017, 136: 62–75CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Weissleder R, Mahmood U. Radiology, 2001, 219: 316–333CrossRefPubMedGoogle Scholar
  17. 17.
    Weissleder R. Science, 2006, 312: 1168–1171CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou Y, Zhuang Y, Li X, Ågren H, Yu L, Ding J, Zhu L. Chem Eur J, 2017, 23: 7642–7647CrossRefPubMedGoogle Scholar
  19. 19.
    Zhao P, Li X, Baryshnikov G, Wu B, Ågren H, Zhang J, Zhu L. Chem Sci, 2018, 9: 1323–1329CrossRefPubMedGoogle Scholar
  20. 20.
    Liu X, Liang G. Chem Commun, 2017, 53: 1037–1040CrossRefGoogle Scholar
  21. 21.
    Hai Z, Wu J, Saimi D, Ni Y, Zhou R, Liang G. Anal Chem, 2018, 90: 1520–1524CrossRefPubMedGoogle Scholar
  22. 22.
    Choi HS, Gibbs SL, Lee JH, Kim SH, Ashitate Y, Liu F, Hyun H, Park GL, Xie Y, Bae S, Henary M, Frangioni JV. Nat Biotechnol, 2013, 31: 148–153CrossRefPubMedGoogle Scholar
  23. 23.
    Yuan Y, Zhang J, Cao Q, An L, Liang G. Anal Chem, 2015, 87: 6180–6185CrossRefPubMedGoogle Scholar
  24. 24.
    Jiang J, Zhao Z, Hai Z, Wang H, Liang G. Anal Chem, 2017, 89: 9625–9628CrossRefPubMedGoogle Scholar
  25. 25.
    Kojima R, Takakura H, Ozawa T, Tada Y, Nagano T, Urano Y. Angew Chem Int Ed, 2013, 52: 1175–1179CrossRefGoogle Scholar
  26. 26.
    Evans MS, Chaurette JP, Adams ST, Reddy GR, Paley MA, Aronin N, Prescher JA, Miller SC. Nat Methods, 2014, 11: 393–395CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Heffern MC, Park HM, Au-Yeung HY, Van de Bittner GC, Ackerman CM, Stahl A, Chang CJ. Proc Natl Acad Sci USA, 2016, 113: 14219–14224CrossRefPubMedGoogle Scholar
  28. 28.
    Conley NR, Dragulescu-Andrasi A, Rao J, Moerner WE. Angew Chem, 2012, 124: 3406–3409CrossRefGoogle Scholar
  29. 29.
    Li J, Chen L, Du L, Li M. Chem Soc Rev, 2013, 42: 662–676CrossRefPubMedGoogle Scholar
  30. 30.
    Bailey TS, Donor MT, Naughton SP, Pluth MD. Chem Commun, 2015, 51: 5425–5428CrossRefGoogle Scholar
  31. 31.
    Godinat A, Park HM, Miller SC, Cheng K, Hanahan D, Sanman LE, Bogyo M, Yu A, Nikitin GF, Stahl A, Dubikovskaya EA. ACS Chem Biol, 2013, 8: 987–999CrossRefPubMedGoogle Scholar
  32. 32.
    Yuan Y, Wang F, Tang W, Ding Z, Wang L, Liang L, Zheng Z, Zhang H, Liang G. ACS Nano, 2016, 10: 7147–7153CrossRefPubMedGoogle Scholar
  33. 33.
    Kathuria S, Gaetani S, Fegley D, Valiño F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D. Nat Med, 2003, 9: 76–81CrossRefPubMedGoogle Scholar
  34. 34.
    Zheng Z, Li G, Wu C, Zhang M, Zhao Y, Liang G. Chem Commun, 2017, 53: 3567–3570CrossRefGoogle Scholar
  35. 35.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. NeuroImage, 2004, 23: S208–S219CrossRefPubMedGoogle Scholar
  36. 36.
    Ai L, Gao X, Xiong J. BMC Med Imag, 2014, 14: 6CrossRefGoogle Scholar
  37. 37.
    Weissleder R, Pittet MJ. Nature, 2008, 452: 580–589CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tegafaw T, Xu W, Wasi Ahmad M, Baeck JS, Chang Y, Bae JE, Chae KS, Kim TJ, Lee GH. Nanotechnology, 2015, 26: 365102CrossRefPubMedGoogle Scholar
  39. 39.
    Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. J Am Chem Soc, 2010, 132: 13270–13278CrossRefPubMedGoogle Scholar
  40. 40.
    Liang G, Ronald J, Chen Y, Ye D, Pandit P, Ma ML, Rutt B, Rao J. Angew Chem Int Ed, 2011, 50: 6283–6286CrossRefGoogle Scholar
  41. 41.
    Cao CY, Shen YY, Wang JD, Li L, Liang GL. Sci Rep, 2013, 3: 1024CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yuan Y, Ding Z, Qian J, Zhang J, Xu J, Dong X, Han T, Ge S, Luo Y, Wang Y, Zhong K, Liang G. Nano Lett, 2016, 16: 2686–2691CrossRefPubMedGoogle Scholar
  43. 43.
    Mizukami S, Takikawa R, Sugihara F, Hori Y, Tochio H, Wälchli M, Shirakawa M, Kikuchi K. J Am Chem Soc, 2008, 130: 794–795CrossRefPubMedGoogle Scholar
  44. 44.
    Yuan Y, Sun H, Ge S, Wang M, Zhao H, Wang L, An L, Zhang J, Zhang H, Hu B, Wang J, Liang G. ACS Nano, 2014, 9: 761–768CrossRefPubMedGoogle Scholar
  45. 45.
    Yuan Y, Ge S, Sun H, Dong X, Zhao H, An L, Zhang J, Wang J, Hu B, Liang G. ACS Nano, 2015, 9: 5117–5124CrossRefPubMedGoogle Scholar
  46. 46.
    Gambhir SS. Nat Rev Cancer, 2002, 2: 683–693CrossRefPubMedGoogle Scholar
  47. 47.
    Wester HJ, Schottelius M, Scheidhauer K, Meisetschläger G, Herz M, Rau FC, Reubi JC, Schwaiger M. Eur J Nucl Med Mol Imag, 2003, 30: 117–122CrossRefGoogle Scholar
  48. 48.
    Miller PW, Long NJ, Vilar R, Gee AD. Angew Chem Int Ed, 2008, 47: 8998–9033CrossRefGoogle Scholar
  49. 49.
    Jeon J, Shen B, Xiong L, Miao Z, Lee KH, Rao J, Chin FT. Bioconjugate Chem, 2012, 23: 1902–1908CrossRefGoogle Scholar
  50. 50.
    Su X, Cheng K, Jeon J, Shen B, Venturin GT, Hu X, Rao J, Chin FT, Wu H, Cheng Z. Mol Pharm, 2014, 11: 3947–3956CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nkster JAH, Colin DJ, Seimbille Y. Org Biomol Chem, 2015, 13: 3667–3676CrossRefGoogle Scholar
  52. 52.
    Colin DJ, Inkster JAH, Germain S, Seimbille Y. EJNMMI Radiopharm Chem, 2017, 1: 16CrossRefPubMedGoogle Scholar
  53. 53.
    Miao Q, Bai X, Shen Y, Mei B, Gao J, Li L, Liang G. Chem Commun, 2012, 48: 9738–9740CrossRefGoogle Scholar
  54. 54.
    Liu Y, Miao Q, Zou P, Liu L, Wang X, An L, Zhang X, Qian X, Luo S, Liang G. Theranostics, 2015, 5: 1058–1067CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang LV, Hu S. Science, 2012, 335: 1458–1462CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    de la Zerda A, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS. Nano Lett, 2010, 10: 2168–2172CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Dragulescu-Andrasi A, Kothapalli SR, Tikhomirov GA, Rao J, Gambhir SS. J Am Chem Soc, 2013, 135: 11015–11022CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI. Science, 2004, 303: 1352–1355CrossRefPubMedGoogle Scholar
  59. 59.
    Jayawarna V, Ali M, Jowitt T, Miller A, Saiani A, Gough J, Ulijn R. Adv Mater, 2006, 18: 611–614CrossRefGoogle Scholar
  60. 60.
    Yang Z, Liang G, Ma M, Abbah AS, Lu WW, Xu B. Chem Commun, 2007, 354: 843–845CrossRefGoogle Scholar
  61. 61.
    Yuan Y, Zhang J, Wang M, Mei B, Guan Y, Liang G. Anal Chem, 2013, 85: 1280–1284CrossRefPubMedGoogle Scholar
  62. 62.
    Liu S, Tang A, Xie M, Zhao Y, Jiang J, Liang G. Angew Chem Int Ed, 2015, 54: 3639–3642CrossRefGoogle Scholar
  63. 63.
    Zheng Z, Chen P, Xie M, Wu C, Luo Y, Wang W, Jiang J, Liang G. J Am Chem Soc, 2016, 138: 11128–11131CrossRefPubMedGoogle Scholar
  64. 64.
    Yuan Y, Wang L, Du W, Ding Z, Zhang J, Han T, An L, Zhang H, Liang G. Angew Chem Int Ed, 2015, 54: 9700–9704CrossRefGoogle Scholar
  65. 65.
    Ai F, Ju Q, Zhang X, Chen X, Wang F, Zhu G. Sci Rep, 2015, 5: 10785CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Xu CT, Zhan Q, Liu H, Somesfalean G, Qian J, He S, Andersson-Engels S. Laser Photonics Rev, 2013, 7: 663–697CrossRefGoogle Scholar
  67. 67.
    Ai X, Ho CJH, Aw J, Attia ABE, Mu J, Wang Y, Wang X, Wang Y, Liu X, Chen H, Gao M, Chen X, Yeow EKL, Liu G, Olivo M, Xing B. Nat Commun, 2016, 7: 10432CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang P, Zhang CJ, Chen G, Na Z, Yao SQ, Sun H. Chem Commun, 2013, 49: 8644–8646CrossRefGoogle Scholar
  69. 69.
    Cheng Y, Peng H, Chen W, Ni N, Ke B, Dai C, Wang B. Chem Eur J, 2013, 19: 4036–4042CrossRefPubMedGoogle Scholar
  70. 70.
    Yuan Y, Li D, Zhang J, Chen X, Zhang C, Ding Z, Wang L, Zhang X, Yuan J, Li Y, Kang Y, Liang G. Chem Sci, 2015, 6: 6425–6431CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Baker M. Nature, 2010, 463: 977–980CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hefei National Laboratory of Physical Sciences at Microscale, Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations