Advertisement

Applications of CBT-Cys click reaction: past, present, and future

  • Miaomiao Zhang
  • Gaolin Liang
Reviews SPECIAL ISSUE: Celebrating the 60th Anniversary of the University of Science and Technology of China

Abstract

Herein, we review the development, applications and potential prospects of CBT-Cys click reaction. This click condensation reaction is based on the condensation reaction between 2-cyanobenzothiazole (CBT) and D-cysteine (D-Cys) in fireflies and has high biocompatibility and controllability in physiological solutions. Under the control of pH, reduction, or enzyme, this CBTbased click reaction has been widely applied to a wide range of biomedical fields such as protein labeling, molecular imaging (e. g., optical imaging, nuclear imaging, magnetic resonance imaging and photoacoustic imaging), nanomaterial fabrication, cancer therapy, and other potentialities.

Keywords

CBT-Cys click reaction self-assembly disassembly molecular imaging cancer therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2016YFA0400904), the National Natural Science Foundation of China (21725505, 21675145), and the Major program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXZY006).

References

  1. 1.
    Kolb HC, Finn MG, Sharpless KB. Angew Chem Int Ed, 2001, 40: 2004–2021CrossRefGoogle Scholar
  2. 2.
    Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. J Am Chem Soc, 2003, 125: 3192–3193CrossRefGoogle Scholar
  3. 3.
    Agard NJ, Prescher JA, Bertozzi CR. J Am Chem Soc, 2004, 126: 15046–15047CrossRefGoogle Scholar
  4. 4.
    Speers AE, Adam GC, Cravatt BF. J Am Chem Soc, 2003, 125: 4686–4687CrossRefGoogle Scholar
  5. 5.
    White EH, McCapra F, Field GF. J Am Chem Soc, 1963, 85: 337–343CrossRefGoogle Scholar
  6. 6.
    Liang G, Ren H, Rao J. Nat Chem, 2010, 2: 54–60CrossRefGoogle Scholar
  7. 7.
    Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Proc Natl Acad Sci USA, 2007, 104: 16793–16797CrossRefGoogle Scholar
  8. 8.
    Yuan Y, Liang G. Org Biomol Chem, 2014, 12: 865–871CrossRefGoogle Scholar
  9. 9.
    Zheng Z, Chen P, Li G, Zhu Y, Shi Z, Luo Y, Zhao C, Fu Z, Cui X, Ji C, Wang F, Huang G, Liang G. Chem Sci, 2017, 8: 214–222CrossRefGoogle Scholar
  10. 10.
    Pipes GD, Kosky AA, Abel J, Zhang Y, Treuheit MJ, Kleemann GR. Pharm Res, 2005, 22: 1059–1068CrossRefGoogle Scholar
  11. 11.
    Ren H, Xiao F, Zhan K, Kim YP, Xie H, Xia Z, Rao J. Angew Chem Int Ed, 2009, 48: 9658–9662CrossRefGoogle Scholar
  12. 12.
    Wang X, Li Q, Yuan Y, Mei B, Huang R, Tian Y, Sun J, Cao C, Lu G, Liang G. Org Biomol Chem, 2012, 10: 8082–8086CrossRefGoogle Scholar
  13. 13.
    Yuan Y, Wang X, Mei B, Zhang D, Tang A, An L, He X, Jiang J, Liang G. Sci Rep, 2013, 3: 3523CrossRefGoogle Scholar
  14. 14.
    Nguyen DP, Elliott T, Holt M, Muir TW, Chin JW. J Am Chem Soc, 2011, 133: 11418–11421CrossRefGoogle Scholar
  15. 15.
    Kilpatrick LE, Friedman-Ohana R, Alcobia DC, Riching K, Peach CJ, Wheal AJ, Briddon SJ, Robers MB, Zimmerman K, Machleidt T, Wood KV, Woolard J, Hill SJ. Biochem Pharmacol, 2017, 136: 62–75CrossRefGoogle Scholar
  16. 16.
    Weissleder R, Mahmood U. Radiology, 2001, 219: 316–333CrossRefGoogle Scholar
  17. 17.
    Weissleder R. Science, 2006, 312: 1168–1171CrossRefGoogle Scholar
  18. 18.
    Zhou Y, Zhuang Y, Li X, Ågren H, Yu L, Ding J, Zhu L. Chem Eur J, 2017, 23: 7642–7647CrossRefGoogle Scholar
  19. 19.
    Zhao P, Li X, Baryshnikov G, Wu B, Ågren H, Zhang J, Zhu L. Chem Sci, 2018, 9: 1323–1329CrossRefGoogle Scholar
  20. 20.
    Liu X, Liang G. Chem Commun, 2017, 53: 1037–1040CrossRefGoogle Scholar
  21. 21.
    Hai Z, Wu J, Saimi D, Ni Y, Zhou R, Liang G. Anal Chem, 2018, 90: 1520–1524CrossRefGoogle Scholar
  22. 22.
    Choi HS, Gibbs SL, Lee JH, Kim SH, Ashitate Y, Liu F, Hyun H, Park GL, Xie Y, Bae S, Henary M, Frangioni JV. Nat Biotechnol, 2013, 31: 148–153CrossRefGoogle Scholar
  23. 23.
    Yuan Y, Zhang J, Cao Q, An L, Liang G. Anal Chem, 2015, 87: 6180–6185CrossRefGoogle Scholar
  24. 24.
    Jiang J, Zhao Z, Hai Z, Wang H, Liang G. Anal Chem, 2017, 89: 9625–9628CrossRefGoogle Scholar
  25. 25.
    Kojima R, Takakura H, Ozawa T, Tada Y, Nagano T, Urano Y. Angew Chem Int Ed, 2013, 52: 1175–1179CrossRefGoogle Scholar
  26. 26.
    Evans MS, Chaurette JP, Adams ST, Reddy GR, Paley MA, Aronin N, Prescher JA, Miller SC. Nat Methods, 2014, 11: 393–395CrossRefGoogle Scholar
  27. 27.
    Heffern MC, Park HM, Au-Yeung HY, Van de Bittner GC, Ackerman CM, Stahl A, Chang CJ. Proc Natl Acad Sci USA, 2016, 113: 14219–14224CrossRefGoogle Scholar
  28. 28.
    Conley NR, Dragulescu-Andrasi A, Rao J, Moerner WE. Angew Chem, 2012, 124: 3406–3409CrossRefGoogle Scholar
  29. 29.
    Li J, Chen L, Du L, Li M. Chem Soc Rev, 2013, 42: 662–676CrossRefGoogle Scholar
  30. 30.
    Bailey TS, Donor MT, Naughton SP, Pluth MD. Chem Commun, 2015, 51: 5425–5428CrossRefGoogle Scholar
  31. 31.
    Godinat A, Park HM, Miller SC, Cheng K, Hanahan D, Sanman LE, Bogyo M, Yu A, Nikitin GF, Stahl A, Dubikovskaya EA. ACS Chem Biol, 2013, 8: 987–999CrossRefGoogle Scholar
  32. 32.
    Yuan Y, Wang F, Tang W, Ding Z, Wang L, Liang L, Zheng Z, Zhang H, Liang G. ACS Nano, 2016, 10: 7147–7153CrossRefGoogle Scholar
  33. 33.
    Kathuria S, Gaetani S, Fegley D, Valiño F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D. Nat Med, 2003, 9: 76–81CrossRefGoogle Scholar
  34. 34.
    Zheng Z, Li G, Wu C, Zhang M, Zhao Y, Liang G. Chem Commun, 2017, 53: 3567–3570CrossRefGoogle Scholar
  35. 35.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behren TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM. NeuroImage, 2004, 23: S208–S219CrossRefGoogle Scholar
  36. 36.
    Ai L, Gao X, Xiong J. BMC Med Imag, 2014, 14: 6CrossRefGoogle Scholar
  37. 37.
    Weissleder R, Pittet MJ. Nature, 2008, 452: 580–589CrossRefGoogle Scholar
  38. 38.
    Tegafaw T, Xu W, Wasi Ahmad M, Baeck JS, Chang Y, Bae JE, Chae KS, Kim TJ, Lee GH. Nanotechnology, 2015, 26: 365102CrossRefGoogle Scholar
  39. 39.
    Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. J Am Chem Soc, 2010, 132: 13270–13278CrossRefGoogle Scholar
  40. 40.
    Liang G, Ronald J, Chen Y, Ye D, Pandit P, Ma ML, Rutt B, Rao J. Angew Chem Int Ed, 2011, 50: 6283–6286CrossRefGoogle Scholar
  41. 41.
    Cao CY, Shen YY, Wang JD, Li L, Liang GL. Sci Rep, 2013, 3: 1024CrossRefGoogle Scholar
  42. 42.
    Yuan Y, Ding Z, Qian J, Zhang J, Xu J, Dong X, Han T, Ge S, Luo Y, Wang Y, Zhong K, Liang G. Nano Lett, 2016, 16: 2686–2691CrossRefGoogle Scholar
  43. 43.
    Mizukami S, Takikawa R, Sugihara F, Hori Y, Tochio H, Wälchli M, Shirakawa M, Kikuchi K. J Am Chem Soc, 2008, 130: 794–795CrossRefGoogle Scholar
  44. 44.
    Yuan Y, Sun H, Ge S, Wang M, Zhao H, Wang L, An L, Zhang J, Zhang H, Hu B, Wang J, Liang G. ACS Nano, 2014, 9: 761–768CrossRefGoogle Scholar
  45. 45.
    Yuan Y, Ge S, Sun H, Dong X, Zhao H, An L, Zhang J, Wang J, Hu B, Liang G. ACS Nano, 2015, 9: 5117–5124CrossRefGoogle Scholar
  46. 46.
    Gambhir SS. Nat Rev Cancer, 2002, 2: 683–693CrossRefGoogle Scholar
  47. 47.
    Wester HJ, Schottelius M, Scheidhauer K, Meisetschläger G, Herz M, Rau FC, Reubi JC, Schwaiger M. Eur J Nucl Med Mol Imag, 2003, 30: 117–122CrossRefGoogle Scholar
  48. 48.
    Miller PW, Long NJ, Vilar R, Gee AD. Angew Chem Int Ed, 2008, 47: 8998–9033CrossRefGoogle Scholar
  49. 49.
    Jeon J, Shen B, Xiong L, Miao Z, Lee KH, Rao J, Chin FT. Bioconjugate Chem, 2012, 23: 1902–1908CrossRefGoogle Scholar
  50. 50.
    Su X, Cheng K, Jeon J, Shen B, Venturin GT, Hu X, Rao J, Chin FT, Wu H, Cheng Z. Mol Pharm, 2014, 11: 3947–3956CrossRefGoogle Scholar
  51. 51.
    Inkster JAH, Colin DJ, Seimbille Y. Org Biomol Chem, 2015, 13: 3667–3676CrossRefGoogle Scholar
  52. 52.
    Colin DJ, Inkste JAH, Germain S, Seimbille Y. EJNMMI Radiopharm Chem, 2017, 1: 16CrossRefGoogle Scholar
  53. 53.
    Miao Q, Bai X, Shen Y, Mei B, Gao J, Li L, Liang G. Chem Commun, 2012, 48: 9738–9740CrossRefGoogle Scholar
  54. 54.
    Liu Y, Miao Q, Zou P, Liu L, Wang X, An L, Zhang X, Qian X, Luo S, Liang G. Theranostics, 2015, 5: 1058–1067CrossRefGoogle Scholar
  55. 55.
    Wang LV, Hu S. Science, 2012, 335: 1458–1462CrossRefGoogle Scholar
  56. 56.
    de la Zerda A, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS. Nano Lett, 2010, 10: 2168–2172CrossRefGoogle Scholar
  57. 57.
    Dragulescu-Andrasi A, Kothapalli SR, Tikhomirov GA, Rao J, Gambhir SS. J Am Chem Soc, 2013, 135: 11015–11022CrossRefGoogle Scholar
  58. 58.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI. Science, 2004, 303: 1352–1355CrossRefGoogle Scholar
  59. 59.
    Jayawarna V, Ali M, Jowitt T, Miller A, Saiani A, Gough J, Ulijn R. Adv Mater, 2006, 18: 611–614CrossRefGoogle Scholar
  60. 60.
    Yang Z, Liang G, Ma M, Abbah AS, Lu WW, Xu B. Chem Commun, 2007, 354: 843–845CrossRefGoogle Scholar
  61. 61.
    Yuan Y, Zhang J, Wang M, Mei B, Guan Y, Liang G. Anal Chem, 2013, 85: 1280–1284CrossRefGoogle Scholar
  62. 62.
    Liu S, Tang A, Xie M, Zhao Y, Jiang J, Liang G. Angew Chem Int Ed, 2015, 54: 3639–3642CrossRefGoogle Scholar
  63. 63.
    Zheng Z, Chen P, Xie M, Wu C, Luo Y, Wang W, Jiang J, Liang G. J Am Chem Soc, 2016, 138: 11128–11131CrossRefGoogle Scholar
  64. 64.
    Yuan Y, Wang L, Du W, Ding Z, Zhang J, Han T, An L, Zhang H, Liang G. Angew Chem Int Ed, 2015, 54: 9700–9704CrossRefGoogle Scholar
  65. 65.
    Ai F, Ju Q, Zhang X, Chen X, Wang F, Zhu G. Sci Rep, 2015, 5: 10785CrossRefGoogle Scholar
  66. 66.
    Xu CT, Zhan Q, Liu H, Somesfalean G, Qian J, He S, Andersson-Engels S. Laser Photonics Rev, 2013, 7: 663–697CrossRefGoogle Scholar
  67. 67.
    Ai X, Ho CJH, Aw J, Attia ABE, Mu J, Wang Y, Wang X, Wang Y, Liu X, Chen H, Gao M, Chen X, Yeow EKL, Liu G, Olivo M, Xing B. Nat Commun, 2016, 7: 10432CrossRefGoogle Scholar
  68. 68.
    Wang P, Zhang CJ, Chen G, Na Z, Yao SQ, Sun H. Chem Commun, 2013, 49: 8644–8646CrossRefGoogle Scholar
  69. 69.
    Cheng Y, Peng H, Chen W, Ni N, Ke B, Dai C, Wang B. Chem Eur J, 2013, 19: 4036–4042CrossRefGoogle Scholar
  70. 70.
    Yuan Y, Li D, Zhang J, Chen X, Zhang C, Ding Z, Wang L, Zhang X, Yuan J, Li Y, Kang Y, Liang G. Chem Sci, 2015, 6: 6425–6431CrossRefGoogle Scholar
  71. 71.
    Baker M. Nature, 2010, 463: 977–980CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hefei National Laboratory of Physical Sciences at MicroscaleDepartment of Chemistry, University of Science and Technology of ChinaHefeiChina

Personalised recommendations