Advertisement

Science China Chemistry

, Volume 61, Issue 8, pp 898–908 | Cite as

Galactose functionalized diketopyrrolopyrrole as NIR fluorescent probes for lectin detection and HepG2 cell targeting based on aggregation-induced emission mechanism

  • Yandi Hang
  • Xiaolei Cai
  • Jian Wang
  • Tao Jiang
  • Jianli Hua
  • Bin Liu
Articles
  • 164 Downloads

Abstract

Since the elucidation that sugar-lectin interactions contribute to the understanding of “Glycomics”, how to construct glycosensors with rapid response, excellent sensitivity and selectivity is of intense research interest. Herein, we report the design of three NIR emissive glyco-probes based on diketopyrrolopyrrole (DPPs) conjugated with two (DPPG), four (DPPF-G) and six (DPPS-G) galactose groups. All three molecules could probe lectins with excellent sensitivity and selectivity. The increase of glyco-DPP emission in NIR region upon interaction with lectin is due to the aggregates formation induced by sugar-lectin interactions, which have been verified by dynamic light scattering (DLS) and scanning electronic microscope (SEM) analysis. Due to the multiple glyco-ligands on DPPS-G, it has been successfully used to stain HepG2 cells through interactions between galactose and asialogly-coprotein (ASGP-R), which are overexpressed on the surface of HepG2 cells.

Keywords

NIR emissive glyco-probes diketopyrrolopyrrole sugar-lectin interactions 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21772040, 21421004, 21372082, 21572062), the Fundamental Research Funds for the Central Universities (222201717003), the Programme of Introducing Talents of Discipline to Universities (B16017), a Visiting Program at NUS of China Scholarship Council (CSC), the Singapore Ministry of Education (R279-000-391-112), Singapore NRF Investigatorship (R279-000-444-281) and the National University of Singapore (R279-000-482-133).

Supplementary material

11426_2018_9259_MOESM1_ESM.docx (55.5 mb)
Galactose Functionalized Diketopyrrolopyrrole as a NIR Fluorescent Probe for lectin detection and HepG2 Cell Targeting based on Aggregation-induced-emission Mechanism

References

  1. 1.
    Zeng X, Andrade CAS, Oliveira MDL, Sun XL. Anal Bioanal Chem, 2012, 402: 3161–3176CrossRefGoogle Scholar
  2. 2.
    Wang KR, An HW, Rong RX, Cao ZR, Li XL. Biosens Bioelectron, 2014, 58: 27–32CrossRefGoogle Scholar
  3. 3.
    Xue C, Jog SP, Murthy P, Liu H. Biomacromolecules, 2006, 7: 2470–2474CrossRefGoogle Scholar
  4. 4.
    Li Z, Deng SS, Zang Y, Gu Z, He XP, Chen GR, Chen K, James TD, Li J, Long YT. Sci Rep, 2013, 3: 2293–2299CrossRefGoogle Scholar
  5. 5.
    Jain K, Kesharwani P, Gupta U, Jain NK. Biomaterials, 2012, 33: 4166–4186CrossRefGoogle Scholar
  6. 6.
    Liu FT, Rabinovich GA. Nat Rev Cancer, 2005, 5: 29–41CrossRefGoogle Scholar
  7. 7.
    Zhang HL, Wei XL, Zang Y, Cao JY, Liu S, He XP, Chen Q, Long YT, Li J, Chen GR, Chen K. Adv Mater, 2013, 25: 4097–4101CrossRefGoogle Scholar
  8. 8.
    Sansone F, Casnati A. Chem Soc Rev, 2013, 42: 4623CrossRefGoogle Scholar
  9. 9.
    Gorityala BK, Lu Z, Leow ML, Ma J, Liu XW. J Am Chem Soc, 2012, 134: 15229–15232CrossRefGoogle Scholar
  10. 10.
    Martín Rodríguez E, Bogdan N, Capobianco JA, Orlandi S, Cavazzini M, Scalera C, Quici S. Dalton Trans, 2013, 42: 9453CrossRefGoogle Scholar
  11. 11.
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940CrossRefGoogle Scholar
  12. 12.
    Zhu Q, Zhang Y, Nie H, Zhao Z, Liu S, Wong KS, Tang BZ. Chem Sci, 2015, 6: 4690–4697CrossRefGoogle Scholar
  13. 13.
    Zhang CJ, Feng G, Xu S, Zhu Z, Lu X, Wu J, Liu B. Angew Chem Int Ed, 2016, 55: 6192–6196CrossRefGoogle Scholar
  14. 14.
    Chang ZF, Jing LM, Chen B, Zhang M, Cai X, Liu JJ, Ye YC, Lou X, Zhao Z, Liu B, Wang JL, Tang BZ. Chem Sci, 2016, 7: 4527–4536CrossRefGoogle Scholar
  15. 15.
    Zhao E, Chen Y, Chen S, Deng H, Gui C, Leung CWT, Hong Y, Lam JWY, Tang BZ. Adv Mater, 2015, 27: 4931–4937CrossRefGoogle Scholar
  16. 16.
    Yuan Y, Xu S, Cheng X, Cai X, Liu B. Angew Chem Int Ed, 2016, 55: 6457–6461CrossRefGoogle Scholar
  17. 17.
    Yuan Y, Zhang CJ, Xu S, Liu B. Chem Sci, 2016, 7: 1862–1866CrossRefGoogle Scholar
  18. 18.
    Yuan Y, Zhang CJ, Liu B. Angew Chem Int Ed, 2015, 54: 11419–11423CrossRefGoogle Scholar
  19. 19.
    Feng G, Yuan Y, Fang H, Zhang R, Xing B, Zhang G, Zhang D, Liu B. Chem Commun, 2015, 51: 12490–12493CrossRefGoogle Scholar
  20. 20.
    Zhao N, Lam JWY, Sung HHY, Su HM, Williams ID, Wong KS, Tang BZ. Chem Eur J, 2014, 20: 133–138CrossRefGoogle Scholar
  21. 21.
    Sanji T, Shiraishi K, Nakamura M, Tanaka M. Chem Asian J, 2010, 5: 817–824CrossRefGoogle Scholar
  22. 22.
    Wang JX, Chen Q, Bian N, Yang F, Sun J, Qi AD, Yan CG, Han BH. Org Biomol Chem, 2011, 9: 2219–2226CrossRefGoogle Scholar
  23. 23.
    Purc A, Sobczyk K, Sakagami Y, Ando A, Kamada K, Gryko DT. J Mater Chem C, 2015, 3: 742–749CrossRefGoogle Scholar
  24. 24.
    Gao Y, Feng G, Jiang T, Goh C, Ng L, Liu B, Li B, Yang L, Hua J, Tian H. Adv Funct Mater, 2015, 25: 2857–2866CrossRefGoogle Scholar
  25. 25.
    Zhang X, Hang Y, Qu W, Yan Y, Zhao P, Hua J. RSC Adv, 2016, 6: 20014–20020CrossRefGoogle Scholar
  26. 26.
    Qu W, Yang L, Hang Y, Zhang X, Qu Y, Hua J. Sens Actuat B-Chem, 2015, 211: 275–282CrossRefGoogle Scholar
  27. 27.
    Qu Y, Wu Y, Gao Y, Qu S, Yang L, Hua J. Sens Actuat B-Chem, 2014, 197: 13–19CrossRefGoogle Scholar
  28. 28.
    Huang S, Liu S, Wang K, Yang C, Luo Y, Zhang Y, Cao B, Kang Y, Wang M. Nanoscale, 2015, 7: 889–895CrossRefGoogle Scholar
  29. 29.
    Aigner D, Ungerböck B, Mayr T, Saf R, Klimant I, Borisov SM. J Mater Chem C, 2013, 1: 5685–5693CrossRefGoogle Scholar
  30. 30.
    Shen XY, Wang YJ, Zhang H, Qin A, Sun JZ, Tang BZ. Chem Commun, 2014, 50: 8747–8750CrossRefGoogle Scholar
  31. 31.
    Wang L, Yang L, Cao D. Sens Actuat B-Chem, 2015, 221: 155–166CrossRefGoogle Scholar
  32. 32.
    Hang Y, Wang J, Jiang T, Lu N, Hua J. Anal Chem, 2016, 88: 1696–1703CrossRefGoogle Scholar
  33. 33.
    Jiang T, Li D, Hang Y, Gao Y, Zhang H, Zhao X, Li X, Li B, Qian J, Hua J. Dyes Pigments, 2016, 133: 201–213CrossRefGoogle Scholar
  34. 34.
    Hang Y, He XP, Yang L, Hua J. Biosens Bioelectron, 2015, 65: 420–426CrossRefGoogle Scholar
  35. 35.
    Lai CH, Lin CY, Wu HT, Chan HS, Chuang YJ, Chen CT, Lin CC. Adv Funct Mater, 2010, 20: 3948–3958CrossRefGoogle Scholar
  36. 36.
    Lai CH, Chang TC, Chuang YJ, Tzou DL, Lin CC. Bioconjugate Chem, 2013, 24: 1698–1709CrossRefGoogle Scholar
  37. 37.
    Maniam S, Holmes AB, Leeke GA, Bilic A, Collis GE. Org Lett, 2015, 17: 4022–4025CrossRefGoogle Scholar
  38. 38.
    Zhang F, Jiang KJ, Huang JH, Yu CC, Li SG, Chen MG, Yang LM, Song YL. J Mater Chem A, 2013, 1: 4858–4863CrossRefGoogle Scholar
  39. 39.
    He F, Liu L, Li L. Adv Funct Mater, 2011, 21: 3143–3149CrossRefGoogle Scholar
  40. 40.
    Hasegawa T, Numata M, Okumura S, Kimura T, Sakurai K, Shinkai S. Org Biomol Chem, 2007, 5: 2404–2412CrossRefGoogle Scholar
  41. 41.
    Tong H, Dong Y, Häussler M, Lam JWY, Sung HHY, Williams ID, Sun J, Tang BZ. Chem Commun, 2006, 127: 1133–1135CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science & TechnologShanghaiChina
  2. 2.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations