Science China Chemistry

, Volume 61, Issue 8, pp 1034–1042 | Cite as

Inhibition of anaerobic probiotics on colorectal cancer cells using intestinal microfluidic systems

  • Lin Zhou
  • Sifeng Mao
  • Qiushi Huang
  • Xiangwei HeEmail author
  • Jin-Ming LinEmail author


Intestinal flora play an important role in human’s immune system. Many bacteria adhere to the wall of the testinal wall. These Intestinal flora help digestion, and also stop their disease-causing counterparts from invading. Most of the current researches focused on the interaction between cells and the construction of organs, but few researches studied on the role of microorganisms and cells. Here, we developed an in vitro living cell systems to simulate the structure, absorption, transport and pathophysiological characteristics of the human intestinal tract and the key microbial symbiosis. The co-culture of Clostridium butyricum (C. butyricum) and colon cancer cells showed a different immune effect. C. butyricum could inhibit the proliferation of HCT116 cells, cause cell cycle arrest and promote apoptosis. But it had no significant effect on Caco-2 cells. Thus, basic functional characteristics of the gut were successfully simulated in a controlled microfluidic system. This approach is suggested as a powerful method in the investigation on drug metabolism and intestinal diseases.


microfluidics intestinal microorganisms co-culture metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Fundamental Research Funds for the Central Universities (2016JX03), and the National Natural Science Foundation of China (21435002, 31400085, 81373373).

Supplementary material

11426_2018_9243_MOESM1_ESM.docx (1015 kb)
Inhibition of anaerobic probiotics on colorectal cancer cells using intestinal microfluidic systems


  1. 1.
    Zhao L. Nat Rev Micro, 2013, 11: 639–647CrossRefGoogle Scholar
  2. 2.
    Neish AS. Gastroenterology, 2009, 136: 65–80CrossRefGoogle Scholar
  3. 3.
    Nguyen TLA, Vieira-Silva S, Liston A, Raes J. Dis Model Mech, 2015, 8: 1–16CrossRefGoogle Scholar
  4. 4.
    Flemer B, Lynch DB, Brown JMR, Jeffery IB, Ryan FJ, Claesson MJ, O’Riordain M, Shanahan F, O’Toole PW. Gut, 2017, 66: 633–643CrossRefGoogle Scholar
  5. 5.
    Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F. Nat Med, 2017, 23: 850–858CrossRefGoogle Scholar
  6. 6.
    Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermöhlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M. Nat Neurosci, 2015, 18: 965–977CrossRefGoogle Scholar
  7. 7.
    Balagopal A, Philp FH, Astemborski J, Block TM, Mehta A, Long R, Kirk GD, Mehta SH, Cox AL, Thomas DL, Ray SC. Gastroenterology, 2008, 135: 226–233CrossRefGoogle Scholar
  8. 8.
    Han JL, Lin HL. World J Gastroenterol, 2014, 20: 17737–17745CrossRefGoogle Scholar
  9. 9.
    Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. PLoS Biol, 2007, 5: e177CrossRefGoogle Scholar
  10. 10.
    McCafferty J, Mühlbauer M, Gharaibeh RZ, Arthur JC, Perez-Chanona E, Sha W, Jobin C, Fodor AA. ISME J, 2013, 7: 2116–2125CrossRefGoogle Scholar
  11. 11.
    Li D, Gromov K, Søballe K, Puzas JE, O’Keefe RJ, Awad H, Drissi H, Schwarz EM. J Orthop Res, 2010, 26: 96–105CrossRefGoogle Scholar
  12. 12.
    Liu JJ, Gao D, Mao SF, Lin JM. Sci China Chem, 2012, 55: 494–501CrossRefGoogle Scholar
  13. 13.
    Chen C, Yang G, Geng XR, Wang X, Liu Z, Yang PC. PLoS ONE, 2012, 7: e45941CrossRefGoogle Scholar
  14. 14.
    Pandori MW, Sano T. Gene Ther, 2005, 12: 521–533CrossRefGoogle Scholar
  15. 15.
    Tillinger W, McCole DF, Keely SJ, Bertelsen LS, Wolf PL, Junger WG, Barrett KE. Am J Phys, 2008, 295: R1839–R1845Google Scholar
  16. 16.
    Kim HJ, Huh D, Hamilton G, Ingber DE. Lab Chip, 2012, 12: 2165–2174CrossRefGoogle Scholar
  17. 17.
    Bhatia SN, Ingber DE. Nat Biotechnol, 2014, 32: 760–772CrossRefGoogle Scholar
  18. 18.
    Zheng CH, Chen G’, Pang YH, Huang YY. Sci China Chem, 2012, 55: 502–507CrossRefGoogle Scholar
  19. 19.
    Choe A, Sang KH, Choi I, Choi N, Sung JH. Biomed Microdev, 2017, 9-4: 1–11Google Scholar
  20. 20.
    Chen WW, Li TS, He S, Liu DB, Wang Z, Zhang W, Jiang XY. Sci China Chem, 2011, 54: 1227–1232CrossRefGoogle Scholar
  21. 21.
    Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K, Frachet A, Niegowska M, Estes M, Jäger C, Seguin-Devaux C, Zenhausern F, Wilmes P. Nat Commun, 2016, 7: 11535CrossRefGoogle Scholar
  22. 22.
    Seki H, Shiohara M, Matsumura T, Miyagawa N, Tanaka M, Komiyama A, Kurata S. Pediatr Int, 2010, 45: 86–90CrossRefGoogle Scholar
  23. 23.
    Elimrani I, Dionne S, Saragosti D, Qureshi I, Levy E, Delvin E, Seidman EG. Int J Oncol, 2015, 47: 755–763CrossRefGoogle Scholar
  24. 24.
    Fung KYC, Brierley GV, Henderson S, Hoffmann P, McColl SR, Lockett T, Head R, Cosgrove L. J Proteome Res, 2011, 10: 1860–1869CrossRefGoogle Scholar
  25. 25.
    Wei ZL, Zhao QL, Yu DY, Hassan MA, Kondo T. Anticancer Res, 2008, 28: 1693–1700Google Scholar
  26. 26.
    Tan HT, Tan S, Lin Q, Lim TK, Hew CL, Chung MCM. Mol Cell Proteom, 2008, 7: 1174–1185CrossRefGoogle Scholar
  27. 27.
    Mata A, Fleischman AJ, Roy S. Biomed Microdev, 2005, 7: 281–293CrossRefGoogle Scholar
  28. 28.
    Rajput A, Dominguez San Martin I, Rose R, Beko A, Levea C, Sharratt E, Mazurchuk R, Hoffman RM, Brattain MG, Wang J. J Surgical Res, 2008, 147: 276–281CrossRefGoogle Scholar
  29. 29.
    Han A, Bennett N, MacDonald A, Johnstone M, Whelan J, Donohoe DR. J Cell Physiol, 2015, 231: 1804–1813CrossRefGoogle Scholar
  30. 30.
    Jang KJ, Suh KY. Lab Chip, 2010, 10: 36–42CrossRefGoogle Scholar
  31. 31.
    Weng Y, Zeng H, Nakagawa Y, Ikeda S, Chen F, Nakajima H, Uchiyama K. Chromatography, 2015, 34: 33–40CrossRefGoogle Scholar
  32. 32.
    Mu X, Zheng W, Sun J, Zhang W, Jiang X. Small, 2013, 9: 969–969CrossRefGoogle Scholar
  33. 33.
    Vanhoutvin SALW, Troost FJ, Hamer HM, Lindsey PJ, Koek GH, Jonkers DMAE, Kodde A, Venema K, Brummer RJM. PLoS ONE, 2009, 4: e6759CrossRefGoogle Scholar
  34. 34.
    Kuroiwa-Trzmielina J, de Conti A, Scolastici C, Pereira D, Horst MA, Purgatto E, Ong TP, Moreno FS. Int J Cancer, 2010, 124: 2520–2527CrossRefGoogle Scholar
  35. 35.
    Margineantu DH, Gregory Cox W, Sundell L, Sherwood SW, Beechem JM, Capaldi RA. Mitochondrion, 2002, 1: 425–435CrossRefGoogle Scholar
  36. 36.
    Wang L, Luo HS, Xia H. J Int Med Res, 2009, 37: 803–811CrossRefGoogle Scholar
  37. 37.
    Siddiqui WA, Ahad A, Ahsan H. Arch Toxicol, 2015, 89: 289–317CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Biological Sciences and BiotechnologyBeijing Forestry UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations