A stable metal-covalent-supramolecular organic framework hybrid: enrichment of catalysts for visible light-induced hydrogen production
- 16 Downloads
Abstract
Cubic metal-covalent-supramolecular organic framework (MCSOF-1) hybrid has been created from the reaction of two molecular components and subsequent co-assembly with cucurbit[8]uril (CB[8]) in water. In the presence of CB[8], [Ru(bpy)3]2+ -based acylhydrazine 1·2Cl reacted with aldehyde 2·Cl to quantitatively yield six-armed precursor 3·8Cl through the generation of MCSOF-1. MCSOF-1 combines the structural features of metal-, covalent- and supramolecular organic frameworks. Its periodicity in water and in the solid state was confirmed by synchrotron X-ray scattering and diffraction experiments. MCSOF-1 could enrich discrete anionic polyoxometalates (POMs), maintain periodicity in acidic medium, and remarkably facilitate visible light-induced electron transfer from its [Ru(bpy)3]2+ units to enriched POMs, leading to enhanced catalysis of the POMs for the reduction of proton to H2 in both aqueous (homogeneous) and organic (heterogeneous) media.
Keywords
supramolecular organic framework self-assembly cucurbitu[8]ril photocatalysis hydrogen productionPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was supported by the National Natural Science Foundation of China (21529201, 21432004, 91527301), the Molecular Foundry, Lawrence Berkeley National Laboratory, and the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy (DE-AC02- 05CH11231). We thank the Shanghai Synchrotron Radiation Facility for providing BL16B1 and BL14B1 beamlines for collecting the synchrotron X-ray scattering and diffraction data, and the SIBYLS Beamline 12.3.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory, for collecting solutionphase synchrotron small-angle X-ray scattering data.
Supplementary material
References
- 1.MacGillivray LR, Lukehart CM, ed. Metal-Organic Framework Materials. Singapore: Pan Stanford Publishing Ltd., 2015. 563Google Scholar
- 2.Feng X, Ding X, Jiang D. Chem Soc Rev, 2012, 41: 6010–6022CrossRefGoogle Scholar
- 3.Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548–568CrossRefGoogle Scholar
- 4.Yuan F, Tan J, Guo J. Sci China Chem, 2018, 61: 143–152CrossRefGoogle Scholar
- 5.Yang T, Cui Y, Chen H, Li W. Acta Chim Sin, 2017, 75: 339–350CrossRefGoogle Scholar
- 6.Wu MX, Yang YW. Chin Chem Lett, 2017, 28: 1135–1143CrossRefGoogle Scholar
- 7.Wang H, Zhang DW, Li ZT. Acta Polym Sin, 2017, 1: 19–26Google Scholar
- 8.Liu G, Sheng J, Zhao Y. Sci China Chem, 2017, 60: 1015–1022CrossRefGoogle Scholar
- 9.Ma L, Wang S, Feng X, Wang B. Chin Chem Lett, 2016, 27: 1383–1394CrossRefGoogle Scholar
- 10.Liu XH, Guan CZ, Wang D, Wan LJ. Adv Mater, 2014, 26: 6912–6920CrossRefGoogle Scholar
- 11.Wang H, Ding H, Meng X, Wang C. Chin Chem Lett, 2016, 27: 1376–1382CrossRefGoogle Scholar
- 12.Wang Q, Xiong S, Xiang Z, Peng S, Wang X, Cao D. Sci China Chem, 2016, 59: 643–650CrossRefGoogle Scholar
- 13.Zhang KD, Tian J, Hanifi D, Zhang Y, Sue ACH, Zhou TY, Zhang L, Zhao X, Liu Y, Li ZT. J Am Chem Soc, 2013, 135: 17913–17918CrossRefGoogle Scholar
- 14.Tian J, Zhou TY, Zhang SC, Aloni S, Altoe MV, Xie SH, Wang H, Zhang DW, Zhao X, Liu Y, Li ZT. Nat Commun, 2014, 5: 5574CrossRefGoogle Scholar
- 15.Tian J, Xu ZY, Zhang DW, Wang H, Xie SH, Xu DW, Ren YH, Wang H, Liu Y, Li ZT. Nat Commun, 2016, 7: 11580CrossRefGoogle Scholar
- 16.Wu YP, Yang B, Tian J, Yu SB, Wang H, Zhang DW, Liu Y, Li ZT. Chem Commun, 2017, 53: 13367–13370CrossRefGoogle Scholar
- 17.Pfeffermann M, Dong R, Graf R, Zajaczkowski W, Gorelik T, Pisula W, Narita A, Müllen K, Feng X. J Am Chem Soc, 2015, 137: 14525–14532CrossRefGoogle Scholar
- 18.Zhang Y, Zhan TG, Zhou TY, Qi QY, Xu XN, Zhao X. Chem Commun, 2016, 52: 7588–7591CrossRefGoogle Scholar
- 19.Xu SQ, Zhang X, Nie CB, Pang ZF, Xu XN, Zhao X. Chem Commun, 2015, 51: 16417–16420CrossRefGoogle Scholar
- 20.Li Y, Dong Y, Miao X, Ren Y, Zhang B, Wang P, Yu Y, Li B, Isaacs L, Cao L. Angew Chem Int Ed, 2018, 57: 729–733CrossRefGoogle Scholar
- 21.Ko YH, Kim E, Hwang I, Kim K. Chem Commun, 2007, 35: 1305–1315CrossRefGoogle Scholar
- 22.Liu Y, Yang H, Wang Z, Zhang X. Chem Asian J, 2013, 8: 1626–1632CrossRefGoogle Scholar
- 23.Isaacs L. Acc Chem Res, 2014, 47: 2052–2062CrossRefGoogle Scholar
- 24.Das D, Scherman OA. Isr J Chem, 2011, 51: 537–550CrossRefGoogle Scholar
- 25.Biedermann F, Nau WM, Schneider HJ. Angew Chem Int Ed, 2014, 53: 11158–11171CrossRefGoogle Scholar
- 26.Tian J, Chen L, Zhang DW, Liu Y, Li ZT. Chem Commun, 2016, 52: 6351–6362CrossRefGoogle Scholar
- 27.Tian J, Zhang L, Wang H, Zhang DW, Li ZT. Supramol Chem, 2016, 28: 769–783CrossRefGoogle Scholar
- 28.Wang R, Qiao S, Zhao L, Hou C, Li X, Liu Y, Luo Q, Xu J, Li H, Liu J. Chem Commun, 2017, 53: 10532–10535CrossRefGoogle Scholar
- 29.De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. Chem Rev, 2009, 109: 5687–5754CrossRefGoogle Scholar
- 30.Guo DS, Liu Y. Chem Soc Rev, 2012, 41: 5907CrossRefGoogle Scholar
- 31.Yan X, Wang F, Zheng B, Huang F. Chem Soc Rev, 2012, 41: 6042CrossRefGoogle Scholar
- 32.Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Chem Rev, 2015, 115: 12320–12406CrossRefGoogle Scholar
- 33.Wang Q, Cheng M, Cao Y, Jiang J, Wang L. Acta Chim Sin, 2016, 74: 9–16CrossRefGoogle Scholar
- 34.Xiong C, Sun R. Chin J Chem, 2017, 35: 1669–1672CrossRefGoogle Scholar
- 35.Yin ZJ, Wu ZQ, Lin F, Qi QY, Xu XN, Zhao X. Chin Chem Lett, 2017, 28: 1167–1171CrossRefGoogle Scholar
- 36.Wang Q, Cheng M, Jiang JL, Wang LY. Chin Chem Lett, 2017, 28: 793–797CrossRefGoogle Scholar
- 37.Li H, Wang J, Ni Y, Zhou Y, Yan D. Acta Chim Sin, 2016, 74: 415–421CrossRefGoogle Scholar
- 38.Yang L, Tan X, Wang Z, Zhang X. Chem Rev, 2015, 115: 7196–7239CrossRefGoogle Scholar
- 39.Tian J, Yao C, Yang WL, Zhang L, Zhang DW, Wang H, Zhang F, Liu Y, Li ZT. Chin Chem Lett, 2017, 28: 798–806CrossRefGoogle Scholar
- 40.Yao C, Tian J, Wang H, Zhang DW, Liu Y, Zhang F, Li ZT. Chin Chem Lett, 2017, 28: 893–899CrossRefGoogle Scholar
- 41.Materials Studio 7.0, Accelrys Software Inc., San Diego, USAGoogle Scholar
- 42.Yang TY, Wen W, Yin GZ, Li XL, Gao M, Gu YL, Li L, Liu Y, Lin H, Zhang XM, Zhao B, Liu TK, Yang YG, Li Z, Zhou XT, Gao XY, Nucl Sci Tech, 2015, 26: 020101Google Scholar
- 43.Zeng J, Bian F, Wang J, Li X, Wang Y, Tian F, Zhou P. J Synchrotron Rad, 2017, 24: 509–520CrossRefGoogle Scholar
- 44.Zhang ZM, Zhang T, Wang C, Lin Z, Long LS, Lin W. J Am Chem Soc, 2015, 137: 3197–3200CrossRefGoogle Scholar
- 45.Wang F, Liang WJ, Jian JX, Li CB, Chen B, Tung CH, Wu LZ. Angew Chem Int Ed, 2013, 52: 8134–8138CrossRefGoogle Scholar