A stable metal-covalent-supramolecular organic framework hybrid: enrichment of catalysts for visible light-induced hydrogen production

Articles
  • 16 Downloads

Abstract

Cubic metal-covalent-supramolecular organic framework (MCSOF-1) hybrid has been created from the reaction of two molecular components and subsequent co-assembly with cucurbit[8]uril (CB[8]) in water. In the presence of CB[8], [Ru(bpy)3]2+ -based acylhydrazine 1·2Cl reacted with aldehyde 2·Cl to quantitatively yield six-armed precursor 3·8Cl through the generation of MCSOF-1. MCSOF-1 combines the structural features of metal-, covalent- and supramolecular organic frameworks. Its periodicity in water and in the solid state was confirmed by synchrotron X-ray scattering and diffraction experiments. MCSOF-1 could enrich discrete anionic polyoxometalates (POMs), maintain periodicity in acidic medium, and remarkably facilitate visible light-induced electron transfer from its [Ru(bpy)3]2+ units to enriched POMs, leading to enhanced catalysis of the POMs for the reduction of proton to H2 in both aqueous (homogeneous) and organic (heterogeneous) media.

Keywords

supramolecular organic framework self-assembly cucurbitu[8]ril photocatalysis hydrogen production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21529201, 21432004, 91527301), the Molecular Foundry, Lawrence Berkeley National Laboratory, and the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy (DE-AC02- 05CH11231). We thank the Shanghai Synchrotron Radiation Facility for providing BL16B1 and BL14B1 beamlines for collecting the synchrotron X-ray scattering and diffraction data, and the SIBYLS Beamline 12.3.1 of the Advanced Light Source, Lawrence Berkeley National Laboratory, for collecting solutionphase synchrotron small-angle X-ray scattering data.

Supplementary material

11426_2018_9234_MOESM1_ESM.pdf (2.9 mb)
Supplementary material, approximately 3007 KB.

References

  1. 1.
    MacGillivray LR, Lukehart CM, ed. Metal-Organic Framework Materials. Singapore: Pan Stanford Publishing Ltd., 2015. 563Google Scholar
  2. 2.
    Feng X, Ding X, Jiang D. Chem Soc Rev, 2012, 41: 6010–6022CrossRefGoogle Scholar
  3. 3.
    Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548–568CrossRefGoogle Scholar
  4. 4.
    Yuan F, Tan J, Guo J. Sci China Chem, 2018, 61: 143–152CrossRefGoogle Scholar
  5. 5.
    Yang T, Cui Y, Chen H, Li W. Acta Chim Sin, 2017, 75: 339–350CrossRefGoogle Scholar
  6. 6.
    Wu MX, Yang YW. Chin Chem Lett, 2017, 28: 1135–1143CrossRefGoogle Scholar
  7. 7.
    Wang H, Zhang DW, Li ZT. Acta Polym Sin, 2017, 1: 19–26Google Scholar
  8. 8.
    Liu G, Sheng J, Zhao Y. Sci China Chem, 2017, 60: 1015–1022CrossRefGoogle Scholar
  9. 9.
    Ma L, Wang S, Feng X, Wang B. Chin Chem Lett, 2016, 27: 1383–1394CrossRefGoogle Scholar
  10. 10.
    Liu XH, Guan CZ, Wang D, Wan LJ. Adv Mater, 2014, 26: 6912–6920CrossRefGoogle Scholar
  11. 11.
    Wang H, Ding H, Meng X, Wang C. Chin Chem Lett, 2016, 27: 1376–1382CrossRefGoogle Scholar
  12. 12.
    Wang Q, Xiong S, Xiang Z, Peng S, Wang X, Cao D. Sci China Chem, 2016, 59: 643–650CrossRefGoogle Scholar
  13. 13.
    Zhang KD, Tian J, Hanifi D, Zhang Y, Sue ACH, Zhou TY, Zhang L, Zhao X, Liu Y, Li ZT. J Am Chem Soc, 2013, 135: 17913–17918CrossRefGoogle Scholar
  14. 14.
    Tian J, Zhou TY, Zhang SC, Aloni S, Altoe MV, Xie SH, Wang H, Zhang DW, Zhao X, Liu Y, Li ZT. Nat Commun, 2014, 5: 5574CrossRefGoogle Scholar
  15. 15.
    Tian J, Xu ZY, Zhang DW, Wang H, Xie SH, Xu DW, Ren YH, Wang H, Liu Y, Li ZT. Nat Commun, 2016, 7: 11580CrossRefGoogle Scholar
  16. 16.
    Wu YP, Yang B, Tian J, Yu SB, Wang H, Zhang DW, Liu Y, Li ZT. Chem Commun, 2017, 53: 13367–13370CrossRefGoogle Scholar
  17. 17.
    Pfeffermann M, Dong R, Graf R, Zajaczkowski W, Gorelik T, Pisula W, Narita A, Müllen K, Feng X. J Am Chem Soc, 2015, 137: 14525–14532CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Zhan TG, Zhou TY, Qi QY, Xu XN, Zhao X. Chem Commun, 2016, 52: 7588–7591CrossRefGoogle Scholar
  19. 19.
    Xu SQ, Zhang X, Nie CB, Pang ZF, Xu XN, Zhao X. Chem Commun, 2015, 51: 16417–16420CrossRefGoogle Scholar
  20. 20.
    Li Y, Dong Y, Miao X, Ren Y, Zhang B, Wang P, Yu Y, Li B, Isaacs L, Cao L. Angew Chem Int Ed, 2018, 57: 729–733CrossRefGoogle Scholar
  21. 21.
    Ko YH, Kim E, Hwang I, Kim K. Chem Commun, 2007, 35: 1305–1315CrossRefGoogle Scholar
  22. 22.
    Liu Y, Yang H, Wang Z, Zhang X. Chem Asian J, 2013, 8: 1626–1632CrossRefGoogle Scholar
  23. 23.
    Isaacs L. Acc Chem Res, 2014, 47: 2052–2062CrossRefGoogle Scholar
  24. 24.
    Das D, Scherman OA. Isr J Chem, 2011, 51: 537–550CrossRefGoogle Scholar
  25. 25.
    Biedermann F, Nau WM, Schneider HJ. Angew Chem Int Ed, 2014, 53: 11158–11171CrossRefGoogle Scholar
  26. 26.
    Tian J, Chen L, Zhang DW, Liu Y, Li ZT. Chem Commun, 2016, 52: 6351–6362CrossRefGoogle Scholar
  27. 27.
    Tian J, Zhang L, Wang H, Zhang DW, Li ZT. Supramol Chem, 2016, 28: 769–783CrossRefGoogle Scholar
  28. 28.
    Wang R, Qiao S, Zhao L, Hou C, Li X, Liu Y, Luo Q, Xu J, Li H, Liu J. Chem Commun, 2017, 53: 10532–10535CrossRefGoogle Scholar
  29. 29.
    De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW. Chem Rev, 2009, 109: 5687–5754CrossRefGoogle Scholar
  30. 30.
    Guo DS, Liu Y. Chem Soc Rev, 2012, 41: 5907CrossRefGoogle Scholar
  31. 31.
    Yan X, Wang F, Zheng B, Huang F. Chem Soc Rev, 2012, 41: 6042CrossRefGoogle Scholar
  32. 32.
    Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Chem Rev, 2015, 115: 12320–12406CrossRefGoogle Scholar
  33. 33.
    Wang Q, Cheng M, Cao Y, Jiang J, Wang L. Acta Chim Sin, 2016, 74: 9–16CrossRefGoogle Scholar
  34. 34.
    Xiong C, Sun R. Chin J Chem, 2017, 35: 1669–1672CrossRefGoogle Scholar
  35. 35.
    Yin ZJ, Wu ZQ, Lin F, Qi QY, Xu XN, Zhao X. Chin Chem Lett, 2017, 28: 1167–1171CrossRefGoogle Scholar
  36. 36.
    Wang Q, Cheng M, Jiang JL, Wang LY. Chin Chem Lett, 2017, 28: 793–797CrossRefGoogle Scholar
  37. 37.
    Li H, Wang J, Ni Y, Zhou Y, Yan D. Acta Chim Sin, 2016, 74: 415–421CrossRefGoogle Scholar
  38. 38.
    Yang L, Tan X, Wang Z, Zhang X. Chem Rev, 2015, 115: 7196–7239CrossRefGoogle Scholar
  39. 39.
    Tian J, Yao C, Yang WL, Zhang L, Zhang DW, Wang H, Zhang F, Liu Y, Li ZT. Chin Chem Lett, 2017, 28: 798–806CrossRefGoogle Scholar
  40. 40.
    Yao C, Tian J, Wang H, Zhang DW, Liu Y, Zhang F, Li ZT. Chin Chem Lett, 2017, 28: 893–899CrossRefGoogle Scholar
  41. 41.
    Materials Studio 7.0, Accelrys Software Inc., San Diego, USAGoogle Scholar
  42. 42.
    Yang TY, Wen W, Yin GZ, Li XL, Gao M, Gu YL, Li L, Liu Y, Lin H, Zhang XM, Zhao B, Liu TK, Yang YG, Li Z, Zhou XT, Gao XY, Nucl Sci Tech, 2015, 26: 020101Google Scholar
  43. 43.
    Zeng J, Bian F, Wang J, Li X, Wang Y, Tian F, Zhou P. J Synchrotron Rad, 2017, 24: 509–520CrossRefGoogle Scholar
  44. 44.
    Zhang ZM, Zhang T, Wang C, Lin Z, Long LS, Lin W. J Am Chem Soc, 2015, 137: 3197–3200CrossRefGoogle Scholar
  45. 45.
    Wang F, Liang WJ, Jian JX, Li CB, Chen B, Tung CH, Wu LZ. Angew Chem Int Ed, 2013, 52: 8134–8138CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiChina
  2. 2.The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations