Science China Chemistry

, Volume 61, Issue 8, pp 1014–1019 | Cite as

Carbon nitride with encapsulated nickel for semi-hydrogenation of acetylene: pyridinic nitrogen is responsible for hydrogen dissociative adsorption

  • Teng Fu
  • Tao Wang
  • Hongfang Sun
  • Yida Xu
  • Zhen Dong
  • Xiangke Guo
  • Luming Peng
  • Yan ZhuEmail author
  • Zhaoxu ChenEmail author
  • Weiping DingEmail author


A new mechanism of catalyst has been demonstrated in this article. With the interaction between carbon nitride (CN) and encapsulated nickel, the CN in the catalyst has been endowed with new active sites for the adsorption and activation of hydrogen while nickel itself is physically isolated from the contact with reactive molecules. For the selective hydrogenation of acetylene in large amount of ethylene, the catalyst shows excellent ethylene selectivity than the nickel catalyst itself, which is almost totally unselective. Meanwhile, the CN itself is inactive for the reaction. The results of characterization demonstrate that pyridinic nitrogen doped in the carbon matrix should be the active sites for hydrogen dissociative adsorption. The theoretical calculations further confirm the results and provide with the detail in the electron transfer between nickel and CN in the catalyst. The current results supply a new concept for design of high performance catalyst.


carbon nitride nickel selective hydrogenation acetylene pyridinic nitrogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2017_9226_MOESM1_ESM.docx (159 kb)
Carbon nitride with encapsulated nickel as a hydrogenation catalyst: pyridinic nitrogen is responsible for hydrogen dissociative adsorption


  1. 1.
    Huang W, Mccormick J, Lobo R, Chen J. J Catal, 2007, 246: 40–51CrossRefGoogle Scholar
  2. 2.
    Zea H, Lester K, Datye AK, Rightor E, Gulotty R, Waterman W, Smith M. Appl Catal A-Gen, 2005, 282: 237–245CrossRefGoogle Scholar
  3. 3.
    Spanjers CS, Sim RS, Sturgis NP, Kabius B, Rioux RM. ACS Catal, 2015, 5: 3304–3315CrossRefGoogle Scholar
  4. 4.
    McKenna FM, Mantarosie L, Wells RPK, Hardacre C, Anderson JA. Catal Sci Technol, 2012, 2: 632–638CrossRefGoogle Scholar
  5. 5.
    Collins BM. Selective hydrogenation of highly unsaturated hydrocarbons in the presence of less unsaturated hydrocarbons. US Patent, 4126645, 1978-11-21Google Scholar
  6. 6.
    Canh NT, Blaise D, Patrick S, Charles C. Selective hydrogenation catalyst and a process using that catalyst. US Patent, 6054409, 2000-4-25Google Scholar
  7. 7.
    Kang JH, Shin EW, Kim WJ, Park JD, Moon SH. J Catal, 2002, 208: 310–320CrossRefGoogle Scholar
  8. 8.
    Osswald J, Kovnir K, Armbruster M, Giedigkeit R, Jentoft R, Wild U, Grin Y, Schlogl R. J Catal, 2008, 258: 219–227CrossRefGoogle Scholar
  9. 9.
    Menezes WG, Altmann L, Zielasek V, Thiel K, Bäumer M. J Catal, 2013, 300: 125–135CrossRefGoogle Scholar
  10. 10.
    Murugadoss A, Sorek E, Asscher M. Top Catal, 2014, 57: 1007–1014CrossRefGoogle Scholar
  11. 11.
    Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK. Angew Chem Int Ed, 2008, 47: 9299–9302CrossRefGoogle Scholar
  12. 12.
    Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T. Proc Natl Acad Sci USA, 2011, 108: 937–943CrossRefGoogle Scholar
  13. 13.
    Osswald J, Giedigkeit R, Jentoft R, Armbruster M, Girgsdies F, Kovnir K, Ressler T, Grin Y, Schlogl R. J Catal, 2008, 258: 210–218CrossRefGoogle Scholar
  14. 14.
    Ding L, Yi H, Zhang W, You R, Cao T, Yang J, Lu J, Huang W. ACS Catal, 2016, 6: 3700–3707CrossRefGoogle Scholar
  15. 15.
    Zhou H, Yang X, Li L, Liu X, Huang Y, Pan X, Wang A, Li J, Zhang T. ACS Catal, 2016, 6: 1054–1061CrossRefGoogle Scholar
  16. 16.
    He Y, Fan J, Feng J, Luo C, Yang P, Li D. J Catal, 2015, 331: 118–127CrossRefGoogle Scholar
  17. 17.
    He Y, Liu Y, Yang P, Du Y, Feng J, Cao X, Yang J, Li D. J Catal, 2015, 330: 61–70CrossRefGoogle Scholar
  18. 18.
    Medlin JW, Allendorf MD. J Phys Chem B, 2003, 107: 217–223CrossRefGoogle Scholar
  19. 19.
    Leviness S, Nair V, Weiss AH, Schay Z, Guczi L. J Mol Catal, 1984, 25: 131–140CrossRefGoogle Scholar
  20. 20.
    Jia J, Haraki K, Kondo JN, Domen K, Tamaru K. J Phys Chem B, 2000, 104: 11153–11156CrossRefGoogle Scholar
  21. 21.
    Komhom S, Mekasuwandumrong O, Praserthdam P, Panpranot J. Catal Commun, 2008, 10: 86–91CrossRefGoogle Scholar
  22. 22.
    Komhom S, Mekasuwandumrong O, Panpranot J, Praserthdam P. Ind Eng Chem Res, 2009, 48: 6273–6279CrossRefGoogle Scholar
  23. 23.
    Bond GC, Dowden DA, Mackenzie N. Trans Faraday Soc, 1958, 54: 1537–1546CrossRefGoogle Scholar
  24. 24.
    Kumar N, Ghosh P. J Phys Chem C, 2016, 120: 28654–28663CrossRefGoogle Scholar
  25. 25.
    Yang B, Burch R, Hardacre C, Hu P, Hughes P. J Phys Chem C, 2014, 118: 3664–3671CrossRefGoogle Scholar
  26. 26.
    Armbrüster M, Kovnir K, Friedrich M, Teschner D, Wowsnick G, Hahne M, Gille P, Szentmiklósi L, Feuerbacher M, Heggen M, Girgsdies F, Rosenthal D, Schlögl R, Grin Y. Nat Mater, 2012, 11: 690–693CrossRefGoogle Scholar
  27. 27.
    Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK. Science, 2008, 320: 1320–1322CrossRefGoogle Scholar
  28. 28.
    Yang J, Zhang F, Lu H, Hong X, Jiang H, Wu Y, Li Y. Angew Chem Int Ed, 2015, 54: 10889–10893CrossRefGoogle Scholar
  29. 29.
    Wang Y, Wang X, Antonietti M. Angew Chem Int Ed, 2012, 51: 68–89CrossRefGoogle Scholar
  30. 30.
    Li XH, Chen JS, Wang X, Sun J, Antonietti M. J Am Chem Soc, 2011, 133: 8074–8077CrossRefGoogle Scholar
  31. 31.
    Gao Y, Hu G, Zhong J, Shi Z, Zhu Y, Su DS, Wang J, Bao X, Ma D. Angew Chem Int Ed, 2013, 52: 2109–2113CrossRefGoogle Scholar
  32. 32.
    Sun CY, Chen CC, Ma WH, Zhao JC. Sci China Chem, 2012, 55: 2532–2536CrossRefGoogle Scholar
  33. 33.
    Zhu J, Xiao P, Li H, Carabineiro SAC. ACS Appl Mater Interfaces, 2014, 6: 16449–16465CrossRefGoogle Scholar
  34. 34.
    Cao S, Yu J. J Phys Chem Lett, 2014, 5: 2101–2107CrossRefGoogle Scholar
  35. 35.
    Fu T, Wang M, Cai W, Cui Y, Gao F, Peng L, Chen W, Ding W. ACS Catal, 2014, 4: 2536–2543CrossRefGoogle Scholar
  36. 36.
    Kirumakki S, Shpeizer B, Sagar G, Chary K, Clearfield A. J Catal, 2006, 242: 319–331CrossRefGoogle Scholar
  37. 37.
    Guimon C, Auroux A, Romero E, Monzon A. Appl Catal A-Gen, 2003, 251: 199–214CrossRefGoogle Scholar
  38. 38.
    Wang T, Dong Z, Fu T, Zhao Y, Wang T, Wang Y, Chen Y, Han B, Ding W. Chem Commun, 2015, 51: 17712–17715CrossRefGoogle Scholar
  39. 39.
    Hu Y, Yu YY, Zhao XG, Yang HM, Feng B, Li H, Qiao YX, Hua L, Pan ZY, Hou ZS. Sci China Chem, 2010, 53: 1541–1548CrossRefGoogle Scholar
  40. 40.
    Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ. Angew Chem Int Ed, 2013, 52: 3110–3116CrossRefGoogle Scholar
  41. 41.
    Liu J, Zhang T, Wang Z, Dawson G, Chen W. J Mater Chem, 2011, 21: 14398–14401CrossRefGoogle Scholar
  42. 42.
    Kim M, Hwang S, Yu JS. J Mater Chem, 2007, 17: 1656–1659CrossRefGoogle Scholar
  43. 43.
    Wang T, Dong Z, Cai W, Wang Y, Fu T, Zhao B, Peng L, Ding W, Chen Y. Chem Commun, 2016, 52: 10672–10675CrossRefGoogle Scholar
  44. 44.
    Wang S, Wang J, Zhu M, Bao X, Xiao B, Su D, Li H, Wang Y. J Am Chem Soc, 2015, 137: 15753–15759CrossRefGoogle Scholar
  45. 45.
    Arrigo R, Hävecker M, Schlögl R, Su DS. Chem Commun, 2008, 29: 4891CrossRefGoogle Scholar
  46. 46.
    Hellgren N, Guo J, Luo Y, Såthe C, Agui A, Kashtanov S, Nordgren J, Ågren H, Sundgren JE. Thin Solid Films, 2005, 471: 19–34CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations