Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Phosphine oxide-Sc(OTf)3 catalyzed enantioselective bromoaminocyclization of tri-substituted allyl N-tosylcarbamates

  • 130 Accesses

  • 3 Citations

Abstract

Phosphine oxide-Sc(OTf)3 catalyzed regio- and enantioselective bromoaminocyclization of tri-substituted allyl N-tosylcarbamates is described. A wide variety of optically active tertiary 5-bromo-1,3-oxazinan-2-ones can be obtained with high regio-and enantioselectivity.

This is a preview of subscription content, log in to check access.

References

  1. 1

    (a) Chen G, Ma S. Angew Chem Int Ed, 2010, 49: 8306–8308

  2. (b)

    Castellanos A, Fletcher SP. Chem Eur J, 2011, 17: 5766–5776

  3. (c)

    Tan C, Zhou L, Yeung YY. Synlett, 2011, 2011: 1335–1339

  4. (d)

    Hennecke U. Chem Asian J, 2012, 7: 456–465

  5. (e)

    Denmark SE, Kuester WE, Burk MT. Angew Chem Int Ed, 2012, 51: 10938–10953

  6. (f)

    Fujioka H, Murai K. Heterocycles, 2013, 87: 763–805

  7. (g)

    Chemler SR, Bovino MT. ACS Catal, 2013, 3: 1076–1091

  8. (h)

    Tan CK, Yeung YY. Chem Commun, 2013, 49: 7985–7996

  9. (i)

    Tripathi CB, Mukherjee S. Synlett, 2014, 25: 163–169

  10. (j)

    Chen J, Zhou L. Synthesis, 2014, 46: 586–595

  11. (k)

    Zheng S, Schienebeck CM, Zhang W, Wang HY, Tang W. Asian J Org Chem, 2014, 3: 366–376

  12. (l)

    Liang XW, Zheng C, You SL. Chem Eur J, 2016, 22: 11918–11933

  13. (m)

    Gieuw MH, Ke Z, Yeung YY. Chem Rec, 2017, 17: 287–311

  14. 2

    (a) Inoue T, Kitagawa O, Ochiai O, Shiro M, Taguchi T. Tetrahedron Lett, 1995, 36: 9333–9336

  15. (b)

    Inoue T, Kitagawa O, Saito A, Taguchi T. J Org Chem, 1997, 62: 7384–7389

  16. (c)

    Kang SH, Lee SB, Park CM. J Am Chem Soc, 2003, 125: 15748–15749

  17. (d)

    Kwon HY, Park CM, Lee SB, Youn JH, Kang SH. Chem Eur J, 2008, 14: 1023–1028

  18. (e)

    Ning Z, Jin R, Ding J, Gao L. Synlett, 2009, 2009: 2291–2294

  19. (f)

    Miles DH, Veguillas M, Toste FD. Chem Sci, 2013, 4: 3427

  20. (g)

    Filippova L, Stenstrøm Y, Hansen TV. Tetrahedron Lett, 2014, 55: 419–422

  21. (h)

    Arai T, Sugiyama N, Masu H, Kado S, Yabe S, Yamanaka M. Chem Commun, 2014, 50: 8287–8290

  22. (i)

    Zhu CL, Tian JS, Gu ZY, Xing GW, Xu H. Chem Sci, 2015, 6: 3044–3050

  23. (j)

    Cai Y, Zhou P, Liu X, Zhao J, Lin L, Feng X. Chem Eur J, 2015, 21: 6386–6389

  24. (k)

    Arai T, Watanabe O, Yabe S, Yamanaka M. Angew Chem Int Ed, 2015, 54: 12767–12771

  25. 3

    (a) Li G, Wei HX, Kim SH. Tetrahedron, 2001, 57: 8407–8411

  26. (b)

    Cai Y, Liu X, Hui Y, Jiang J, Wang W, Chen W, Lin L, Feng X. Angew Chem Int Ed, 2010, 49: 6160–6164

  27. (c)

    Hu DX, Shibuya GM, Burns NZ. J Am Chem Soc, 2013, 135: 12960–12963

  28. (d)

    Hu DX, Seidl FJ, Bucher C, Burns NZ. J Am Chem Soc, 2015, 137: 3795–3798

  29. (e)

    Zhou P, Lin L, Chen L, Zhong X, Liu X, Feng X. J Am Chem Soc, 2017, 139: 13414–13419

  30. 4

    (a) Wang M, Gao LX, Mai WP, Xia AX, Wang F, Zhang SB. J Org Chem, 2004, 69: 2874–2876

  31. (b)

    Sakakura A, Ukai A, Ishihara K. Nature, 2007, 445: 900–903

  32. (c)

    Whitehead DC, Yousefi R, Jaganathan A, Borhan B. J Am Chem Soc, 2010, 132: 3298–3300

  33. (d)

    Zhang W, Zheng S, Liu N, Werness JB, Guzei IA, Tang W. J Am Chem Soc, 2010, 132: 3664–3665

  34. (e)

    Veitch GE, Jacobsen EN. Angew Chem Int Ed, 2010, 49: 7332–7335

  35. (f)

    Murai K, Matsushita T, Nakamura A, Fukushima S, Shimura M, Fujioka H. Angew Chem Int Ed, 2010, 49: 9174–9177

  36. (g)

    Zhou L, Tan CK, Jiang X, Chen F, Yeung YY. J Am Chem Soc, 2010, 132: 15474–15476

  37. (h)

    Chen ZM, Zhang QW, Chen ZH, Li H, Tu YQ, Zhang FM, Tian JM. J Am Chem Soc, 2011, 133: 8818–8821

  38. (i)

    Lozano O, Blessley G, Martinez del Campo T, Thompson AL, Giuffredi GT, Bettati M, Walker M, Borman R, Gouverneur V. Angew Chem Int Ed, 2011, 50: 8105–8109

  39. (j)

    Müller C, Wilking M, Rühlmann A, Wibbeling B, Hennecke U. Synlett, 2011, 2011: 2043–2047

  40. (k)

    Dobish MC, Johnston JN. J Am Chem Soc, 2012, 134: 6068–6071

  41. (l)

    Paull DH, Fang C, Donald JR, Pansick AD, Martin SF. J Am Chem Soc, 2012, 134: 11128–11131

  42. (m)

    Tungen JE, Nolsøe JMJ, Hansen TV. Org Lett, 2012, 14: 5884–5887

  43. (n)

    Ikeuchi K, Ido S, Yoshimura S, Asakawa T, Inai M, Hamashima Y, Kan T. Org Lett, 2012, 14: 6016–6019

  44. (o)

    Zeng X, Miao C, Wang S, Xia C, Sun W. Chem Commun, 2013, 49: 2418–2420

  45. (p)

    Tripathi CB, Mukherjee S. Angew Chem Int Ed, 2013, 52: 8450–8453

  46. (q)

    Yin Q, You SL. Org Lett, 2013, 15: 4266–4269

  47. (r)

    Armstrong A, Braddock DC, Jones AX, Clark S. Tetrahedron Lett, 2013, 54: 7004–7008

  48. (s)

    Han X, Dong C, Zhou HB. Adv Synth Catal, 2014, 356: 1275–1280

  49. (t)

    Mizar P, Burrelli A, Günther E, Söftje M, Farooq U, Wirth T. Chem Eur J, 2014, 20: 13113–13116

  50. (u)

    Samanta RC, Yamamoto H. J Am Chem Soc, 2017, 139: 1460–1463

  51. 5

    (a) Nicolaou KC, Simmons NL, Ying Y, Heretsch PM, Chen JS. J Am Chem Soc, 2011, 133: 8134–8137

  52. (b)

    Zhang W, Liu N, Schienebeck CM, Zhou X, Izhar II, Guzei IA, Tang W. Chem Sci, 2013, 4: 2652–2656

  53. (c)

    Zhang Y, Xing H, Xie W, Wan X, Lai Y, Ma D. Adv Synth Catal, 2013, 355: 68–72

  54. (d)

    Li L, Su C, Liu X, Tian H, Shi Y. Org Lett, 2014, 16: 3728–3731

  55. (e)

    Qi J, Fan GT, Chen J, Sun MH, Dong YT, Zhou L. Chem Commun, 2014, 50: 13841–13844

  56. (f)

    Zhang X, Li J, Tian H, Shi Y. Chem Eur J, 2015, 21: 11658–11663

  57. (g)

    Soltanzadeh B, Jaganathan A, Staples RJ, Borhan B. Angew Chem Int Ed, 2015, 54: 9517–9522

  58. 6

    (a) Hennecke U, Muller CH, Frohlich R. Org Lett, 2011, 13: 860–863

  59. (b)

    Rauniyar V, Lackner AD, Hamilton GL, Toste FD. Science, 2011, 334: 1681–1684

  60. (c)

    Huang D, Wang H, Xue F, Guan H, Li L, Peng X, Shi Y. Org Lett, 2011, 13: 6350–6353

  61. (d)

    Denmark SE, Burk MT. Org Lett, 2012, 14: 256–259

  62. (e)

    Wang YM, Wu J, Hoong C, Rauniyar V, Toste FD. J Am Chem Soc, 2012, 134: 12928–12931

  63. (f)

    Romanov-Michailidis F, Guénée L, Alexakis A. Angew Chem Int Ed, 2013, 52: 9266–9270

  64. (g)

    Romanov-Michailidis F, Guénée L, Alexakis A. Org Lett, 2013, 15: 5890–5893

  65. (h)

    Xie W, Jiang G, Liu H, Hu J, Pan X, Zhang H, Wan X, Lai Y, Ma D. Angew Chem Int Ed, 2013, 52: 12924–12927

  66. (i)

    Liu H, Jiang G, Pan X, Wan X, Lai Y, Ma D, Xie W. Org Lett, 2014, 16: 1908–1911

  67. (j)

    Müller CH, Rösner C, Hennecke U. Chem Asian J, 2014, 9: 2162–2169

  68. (k)

    Romanov-Michailidis F, Romanova-Michaelides M, Pupier M, Alexakis A. Chem Eur J, 2015, 21: 5561–5583

  69. 7

    (a) Li G, Fu Q, Zhang X, Jiang J, Tang Z. Tetrahedron-Asymmetry, 2012, 23: 245–251

  70. (b)

    Alix A, Lalli C, Retailleau P, Masson G. J Am Chem Soc, 2012, 134: 10389–10392

  71. (c)

    Honjo T, Phipps RJ, Rauniyar V, Toste FD. Angew Chem Int Ed, 2012, 51: 9684–9688

  72. 8

    Trost BM, Van Vranken DL, Bingel C. J Am Chem Soc, 1992, 114: 9327–9343

  73. 9

    (a) Huang D, Liu X, Li L, Cai Y, Liu W, Shi Y. J Am Chem Soc, 2013, 135: 8101–8104

  74. (b)

    Huang H, Pan H, Cai Y, Liu M, Tian H, Shi Y. Org Biomol Chem, 2015, 13: 3566–3570

  75. (c)

    Pan H, Huang H, Liu W, Tian H, Shi Y. Org Lett, 2016, 18: 896–899

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21632005, 21172221).

Author information

Correspondence to Yian Shi.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Pan, H., Tian, H. et al. Phosphine oxide-Sc(OTf)3 catalyzed enantioselective bromoaminocyclization of tri-substituted allyl N-tosylcarbamates. Sci. China Chem. 61, 656–659 (2018). https://doi.org/10.1007/s11426-017-9192-x

Download citation

Keywords

  • asymmetric bromonation
  • bromoaminocyclization
  • phosphine oxide-Sc(OTf)3
  • 5-bromo-1,3-oxazinan-2-ones