Advertisement

Science China Chemistry

, Volume 60, Issue 9, pp 1187–1190 | Cite as

Single-molecule analysis in an electrochemical confined space

Communications

Abstract

Electrochemical analysis of single molecules is a method with the strong ability of the enhanced efficiency and ultra-sensitivity. Here, we demonstrate that the electrochemical confined space could efficiently convert single molecule characteristics into measurable electrochemical signatures with high temporal resolution. The human telomere repeat sequence T8 was used as a probe to determine the electrochemical confined effect in a nanopore. Our results show that the nanopore with comparable confined space of the telomere repeat sequence exhibits the most distinguishable single-molecule signals which suggest the folded conformation of T8. This method will greatly extend the lifetime of a metastable conformation for a single biomolecule by strong analyte-nanopore interactions, which brings the new insight into the understanding of the biomolecule’s function at single-molecule level.

Keywords

electrochemical confined space nanopores single-molecule analysis DNAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21421004, 21505043, 21327807), and the Fundamental Research Funds for the Central Universities (222201718001, 222201717003, 222201714012).

Supplementary material

11426_2017_9082_MOESM1_ESM.pdf (124 kb)
Single-molecule analysis in an electrochemical confined space

References

  1. 1.
    Ying YL, Zhang J, Gao R, Long YT. Angew Chem Int Ed, 2013, 52: 13154–13161CrossRefGoogle Scholar
  2. 2.
    Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Proc Natl Acad Sci USA, 1996, 93: 13770–13773CrossRefGoogle Scholar
  3. 3.
    Wang X, Li Y, Li T, Liu L, Wu HC. Sci China Chem, 2016, 59: 135–141CrossRefGoogle Scholar
  4. 4.
    Ying YL, Ding Z, Zhan D, Long YT. Chem Sci, 2017, 8: 3338–3348CrossRefGoogle Scholar
  5. 5.
    Long YT, Zhang MN. Sci China Ser B-Chem, 2009, 52: 731–733CrossRefGoogle Scholar
  6. 6.
    Wang, HY, Ying YL, Li Y, Kraatz HB, Long YT. Anal Chem, 2011, 83: 1746–1752CrossRefGoogle Scholar
  7. 7.
    Ying YL, Cao C, Long YT. Analyst, 2014, 139: 3826–3835CrossRefGoogle Scholar
  8. 8.
    Wang HY, Gu Z, Cao C, Wang J, Long YT. Anal Chem, 2013, 85: 8254–8261CrossRefGoogle Scholar
  9. 9.
    Wang HY, Ying YL, Li Y, Kraatz HB, Long YT. Anal Chem, 2011, 83: 1746–1752CrossRefGoogle Scholar
  10. 10.
    Lin Y, Shi X, Liu SC, Ying YL, Li Q, Gao R, Fathi F, Long YT, Tian H. Chem Commun, 2017, 53: 3539–3542CrossRefGoogle Scholar
  11. 11.
    An N, Fleming AM, Middleton EG, Burrows CJ. Proc Natl Acad Sci USA, 2014, 111: 14325–14331CrossRefGoogle Scholar
  12. 12.
    Kwok H, Briggs K, Tabard-Cossa V. PLoS ONE, 2014, 9: e92880CrossRefGoogle Scholar
  13. 13.
    Yanagi I, Akahori R, Hatano T, Takeda KI. Sci Rep, 2015, 4: 5000CrossRefGoogle Scholar
  14. 14.
    Kowalczyk SW, Grosberg AY, Rabin Y, Dekker C. Nanotechnology, 2011, 22: 315101CrossRefGoogle Scholar
  15. 15.
    Laszlo AH, Derrington IM, Brinkerhoff H, Langford KW, Nova IC, Samson JM, Bartlett JJ, Pavlenok M, Gundlach JH. Proc Natl Acad Sci USA, 2013, 110: 18904–18909CrossRefGoogle Scholar
  16. 16.
    Larkin J, Henley R, Bell DC, Cohen-Karni T, Rosenstein JK, Wanunu M. ACS Nano, 2013, 7: 10121–10128CrossRefGoogle Scholar
  17. 17.
    Squires AH, Hersey JS, Grinstaff MW, Meller A. J Am Chem Soc, 2013, 135: 16304–16307CrossRefGoogle Scholar
  18. 18.
    Venta K, Shemer G, Puster M, Rodríguez-Manzo JA, Balan A, Rosenstein JK, Shepard K, Drndić M. ACS Nano, 2013, 7: 4629–4636CrossRefGoogle Scholar
  19. 19.
    Akahori R, Haga T, Hatano T, Yanagi I, Ohura T, Hamamura H, Iwasaki T, Yokoi T, Anazawa T. Nanotechnology, 2014, 25: 275501CrossRefGoogle Scholar
  20. 20.
    Goto Y, Haga T, Yanagi I, Yokoi T, Takeda KI. Sci Rep, 2015, 5: 16640CrossRefGoogle Scholar
  21. 21.
    Carlsen AT, Zahid OK, Ruzicka J, Taylor EW, Hall AR. ACS Nano, 2014, 8: 4754–4760CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials & School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations