Advertisement

Science China Chemistry

, Volume 60, Issue 7, pp 920–926 | Cite as

Reductive amination of 1,6-hexanediol with Ru/Al2O3 catalyst in supercritical ammonia

  • Yan Li
  • Haiyang Cheng
  • Chao Zhang
  • Bin Zhang
  • Tong Liu
  • Qifan Wu
  • Xinluona Su
  • Weiwei Lin
  • Fengyu Zhao
Articles

Abstract

Hexamethylenediamine (HMDA) is an important reagent for the synthesis of Nylon-6,6, and it is usually produced by the hydrogenation of adiponitrile using a toxic reagent of hydrocyanic acid. Herein, we developed an environmental friendly route to produce HMDA via catalytic reductive amination of 1,6-hexanediol (HDO) in the presence of hydrogen. The activities of several heterogeneous metal catalysts such as supported Ni, Co, Ru, Pt, Pd catalysts were screened for the present reaction in supercritical ammonia without any additives. Among the catalysts examined, Ru/Al2O3 presented a high catalytic activity and highest selectivity for the desired product of HMDA. The high performance of Ru/Al2O3 was discussed based on the Ru dispersion and the surface properties like the acid-basicity. In addition, the reaction parameters such as reaction temperature, time, H2 and NH3 pressure were examined, and the reaction processes were discussed in detail.

Keywords

1,6-hexanediol hexamethylenediamine supercritical ammonia reductive amination Ru/Al2O3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (2016YFA0602900), Youth Innovation Promotion Association CAS (2016206), and Jilin Provincial Science and Technology Program of China (20150301012GX).

Supplementary material

11426_2017_9049_MOESM1_ESM.pdf (168 kb)
Reductive Amination of 1,6-Hexanediol with Ru/Al2O3 catalyst in Supercritical Ammonia

References

  1. 1.
    Dros AB, Larue O, Reimond A, De Campo F, Pera-Titus M. Green Chem, 2015, 17: 4760–4772CrossRefGoogle Scholar
  2. 2.
    Roundhill DM. Chem Rev, 1992, 92: 1–27CrossRefGoogle Scholar
  3. 3.
    Fischer A, Mallat T, Baiker A. Catal Today, 1997, 37: 167–189CrossRefGoogle Scholar
  4. 4.
    Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M. ChemCatChem, 2011, 3: 1853–1864CrossRefGoogle Scholar
  5. 5.
    Shimizu K. Catal Sci Technol, 2015, 5: 1412–1427CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Qi X, Cui X, Shi F, Deng Y. Tetrahedron Lett, 2011, 52: 1334–1338CrossRefGoogle Scholar
  7. 7.
    Tuteja J, Choudhary H, Nishimura S, Ebitani K. ChemSusChem, 2014, 7: 96–100CrossRefGoogle Scholar
  8. 8.
    Xiao B, Zheng M, Li X, Pang J, Sun R, Wang H, Pang X, Wang A, Wang X, Zhang T. Green Chem, 2016, 18: 2175–2184CrossRefGoogle Scholar
  9. 9.
    Gunanathan C, Milstein D. Angew Chem Int Ed, 2008, 47: 8661–8664CrossRefGoogle Scholar
  10. 10.
    Molnár Á, Sirokmán G, Bartók M. J Mol Catal, 1983, 19: 25–33CrossRefGoogle Scholar
  11. 11.
    Sirokmán G, Molnár Á, Bartók M. J Mol Catal, 1983, 19: 35–40CrossRefGoogle Scholar
  12. 12.
    Fischer A, Maciejewski M, Bürgi T, Mallat T, Baiker A. J Catal, 1999, 183: 373–383CrossRefGoogle Scholar
  13. 13.
    Fischer A, Mallat T, Baiker A. Angew Chem Int Ed, 1999, 38: 351–354CrossRefGoogle Scholar
  14. 14.
    Fischer A, Mallat T, Baiker A. J Mol Catal A-Chem, 1999, 149: 197–204CrossRefGoogle Scholar
  15. 15.
    Jenzer G, Mallat T, Baiker A. Catal Lett, 1999, 61: 111–114CrossRefGoogle Scholar
  16. 16.
    Fischer A, Mallat T, Baiker A. J Catal, 1999, 182: 289–291CrossRefGoogle Scholar
  17. 17.
    Imm S, Bähn S, Zhang M, Neubert L, Neumann H, Klasovsky F, Pfeffer J, Haas T, Beller M. Angew Chem Int Ed, 2011, 50: 7599–7603CrossRefGoogle Scholar
  18. 18.
    Baumann W, Spannenberg A, Pfeffer J, Haas T, Köckritz A, Martin A, Deutsch J. Chem Eur J, 2013, 19: 17702–17706CrossRefGoogle Scholar
  19. 19.
    Pingen D, Diebolt O, Vogt D. ChemCatChem, 2013, 5: 2905–2912CrossRefGoogle Scholar
  20. 20.
    Pfützenreuter R, Rose M. ChemCatChem, 2016, 8: 251–255CrossRefGoogle Scholar
  21. 21.
    Mormul J, Breitenfeld J, Trapp O, Paciello R, Schaub T, Hofmann P. ACS Catal, 2016, 6: 2802–2810CrossRefGoogle Scholar
  22. 22.
    Horlenko T, Tatum HW. Process for producing hexamethylenediamine from 1-6-hexanediol. US Patent, 3268588, 1966-08-23Google Scholar
  23. 23.
    Winderl S, Haarer E, Corr H, Hornberger P. Production of diaminoalkanes. US Patent, 3270059, 1966-08-30Google Scholar
  24. 24.
    Romanelli GP, Autino JC, Blanco MN, Pizzio LR. Appl Catal A-Gen, 2005, 295: 209–215CrossRefGoogle Scholar
  25. 25.
    Altass HM, Khder AERS. J Mol Catal A-Chem, 2016, 411: 138–145CrossRefGoogle Scholar
  26. 26.
    Srinivas N, Venu Gopal D, Srinivas B, Kulkarni SJ, Subrahmanyam M. Microporous Mesoporous Mater, 2002, 51: 43–50CrossRefGoogle Scholar
  27. 27.
    Zhao F, Ikushima Y, Arai M. J Catal, 2004, 224: 479–483CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yan Li
    • 1
    • 2
  • Haiyang Cheng
    • 1
    • 2
  • Chao Zhang
    • 1
    • 2
  • Bin Zhang
    • 1
    • 2
  • Tong Liu
    • 1
    • 2
  • Qifan Wu
    • 1
    • 2
  • Xinluona Su
    • 1
    • 2
    • 3
  • Weiwei Lin
    • 1
    • 2
  • Fengyu Zhao
    • 1
    • 2
  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.Laboratory of Green Chemistry and Process, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  3. 3.Department of Environmental Science and EngineeringHeilongjiang UniversityHarbinChina

Personalised recommendations