Advertisement

Science China Chemistry

, Volume 61, Issue 1, pp 113–117 | Cite as

Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability

  • Hui Chen
  • Meng Li
  • Zhang Liu
  • Rong Hu
  • Shengliang Li
  • Yuan Guo
  • Fengting LvEmail author
  • Libing Liu
  • Yilin Wang
  • Yuanping Yi
  • Shu WangEmail author
Communications

Abstract

Increasing multidrug-resistant (MDR) superbugs emerge worldwide causing a public health crisis. Consequently, it is urgent to find new antibiotics with efficient broad-spectrum antimicrobial activity. By virtue of versatility in molecular design, a new peptide-like cell membrane-broken molecule, oligo-(7,7′-bifluoren-benzo[c][1,2,5]thiadiazole) (OFBT) possessing a conjugated backbone and eight pendant guanidyl moieties was designed and synthesized. OFBT exhibits favorable broad-spectrum of antimicrobial activity to pathogens including Gram-negative and Gram-positive bacteria, and fungi with the minimum inhibitory concentration (MIC) below 3.0 μM. Moreover, OFBT exhibits high selectivity for pathogens over human cells to make it a promising broad spectrum antimicrobial agent.

Keywords

OFBT broad spectrum antimicrobial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21533012, 21473220), and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030306).

Supplementary material

11426_2017_9034_MOESM1_ESM.pdf (1.5 mb)
Supporting Information

References

  1. 1.
    Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJV, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI. Nat Rev Micro, 2011, 9: 894–896CrossRefGoogle Scholar
  2. 2.
    Zhao Y, Chen Z, Chen Y, Xu J, Li J, Jiang X. J Am Chem Soc, 2013, 135: 12940–12943CrossRefGoogle Scholar
  3. 3.
    Reardon S. Nature, 2015, doi: 10.1038/nature.2015.19037Google Scholar
  4. 4.
    Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Nat Rev Drug Discov, 2007, 6: 29–40CrossRefGoogle Scholar
  5. 5.
    Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K. Nature, 2015, 517: 455–459CrossRefGoogle Scholar
  6. 6.
    Hancock REW, Sahl HG. Nat Biotechnol, 2006, 24: 1551–1557CrossRefGoogle Scholar
  7. 7.
    Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang YY. Nat Nanotech, 2009, 4: 457–463CrossRefGoogle Scholar
  8. 8.
    de Gracia Retamosa M, Díez-Martínez R, Maestro B, García-Fernández E, de Waal B, Meijer EW, García P, Sanz JM. Angew Chem Int Ed, 2015, 54: 13673–13677CrossRefGoogle Scholar
  9. 9.
    Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL. Lancet Infect Dis, 2006, 6: 589–601CrossRefGoogle Scholar
  10. 10.
    Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, DiPersio J, DeAngelo DJ, Abruzzese E, Rea D, Baccarani M, Müller MC, Gambacorti-Passerini C, Wong S, Lustgarten S, Rivera VM, Clackson T, Turner CD, Haluska FG, Guilhot F, Deininger MW, Hochhaus A, Hughes T, Goldman JM, Shah NP, Kantarjian H, Kantarjian H. N Engl J Med, 2013, 369: 1783–1796CrossRefGoogle Scholar
  11. 11.
    Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Sci Transl Med, 2012, 4: 165rv13CrossRefGoogle Scholar
  12. 12.
    Obrecht D, Bernardini F, Dale G, Dembowsky K. Annu Rep Med Chem, 2011, 46: 245CrossRefGoogle Scholar
  13. 13.
    Lee S, Cheng H, Chi M, Xu Q, Chen X, Eom CY, James TD, Park S, Yoon J. Biosens Bioelectron, 2016, 77: 1016–1019CrossRefGoogle Scholar
  14. 14.
    Zhu C, Liu L, Yang Q, Lv F, Wang S. Chem Rev, 2012, 112: 4687–4735CrossRefGoogle Scholar
  15. 15.
    Zhu C, Yang Q, Liu L, Lv F, Li S, Yang G, Wang S. Adv Mater, 2011, 23: 4805–4810CrossRefGoogle Scholar
  16. 16.
    Xing C, Xu Q, Tang H, Liu L, Wang S. J Am Chem Soc, 2009, 131: 13117–13124CrossRefGoogle Scholar
  17. 17.
    Ding L, Chi EY, Schanze KS, Lopez GP, Whitten DG. Langmuir, 2010, 26: 5544–5550CrossRefGoogle Scholar
  18. 18.
    Yuan H, Chong H, Wang B, Zhu C, Liu L, Yang Q, Lv F, Wang S. J Am Chem Soc, 2012, 134: 13184–13187CrossRefGoogle Scholar
  19. 19.
    Ji E, Corbitt TS, Parthasarathy A, Schanze KS, Whitten DG. ACS Appl Mater Interfaces, 2011, 3: 2820–2829CrossRefGoogle Scholar
  20. 20.
    He F, Ren X, Shen X, Xu QH. Macromolecules, 2011, 44: 5373–5380CrossRefGoogle Scholar
  21. 21.
    Wang Y, Chi EY, Schanze KS, Whitten DG. Soft Matter, 2012, 8: 8547CrossRefGoogle Scholar
  22. 22.
    Pappas HC, Lovchik JA, Whitten DG. Langmuir, 2015, 31: 4481–4489CrossRefGoogle Scholar
  23. 23.
    Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. Science, 2012, 336: 315–319CrossRefGoogle Scholar
  24. 24.
    Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. Cell, 2007, 130: 797–810CrossRefGoogle Scholar
  25. 25.
    Chen H, Wang B, Zhang J, Nie C, Lv F, Liu L, Wang S. Chem Commun, 2015, 51: 4036–4039CrossRefGoogle Scholar
  26. 26.
    Parr RG, Weitao Y. Density Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989Google Scholar
  27. 27.
    Dam TK, Brewer CF. Chem Rev, 2002, 102: 387–430CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hui Chen
    • 1
  • Meng Li
    • 1
  • Zhang Liu
    • 2
  • Rong Hu
    • 1
  • Shengliang Li
    • 1
  • Yuan Guo
    • 1
  • Fengting Lv
    • 1
    Email author
  • Libing Liu
    • 1
  • Yilin Wang
    • 2
  • Yuanping Yi
    • 1
  • Shu Wang
    • 1
    Email author
  1. 1.Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations