Skip to main content
Log in

Preparation of horizontally aligned single-walled carbon nanotubes with floating catalyst

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A strategy to prepare horizontally aligned single-walled carbon nanotubes (SWNTs) at moderate temperatures (≤600 °C) were developed. Using ferocene as the catalyst precursor, Fe nanoparticles are formed in the gaseous phase and catalyze the nucleation and growth of SWNTs in situ. Then the resultant SWNTs are deposited onto the substrates downstream and aligned by the surface lattice of the ST-cut single crystal quartz. The preparation of SWNT arrays at moderate temperatures is important for combining the tube growth with device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park H, Afzali A, Han SJ, Tulevski GS, Franklin AD, Tersoff J, Hannon JB, Haensch W. Nat Nanotech, 2012, 7: 787–791

    Article  CAS  Google Scholar 

  2. Wang H, Yuan Y, Wei L, Goh K, Yu D, Chen Y. Carbon, 2015, 81: 1–19

    Article  CAS  Google Scholar 

  3. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H. Science, 2000, 287: 622–625

    Article  CAS  Google Scholar 

  4. Star A, Gabriel JCP, Bradley K, Grüner G. Nano Lett, 2003, 3: 459–463

    Article  CAS  Google Scholar 

  5. Wang C, Ryu K, Badmaev A, Zhang J, Zhou C. ACS Nano, 2011, 5: 1147–1153

    Article  CAS  Google Scholar 

  6. Liu B, Wang C, Liu J, Che Y, Zhou C. Nanoscale, 2013, 5: 9483–9502

    Article  CAS  Google Scholar 

  7. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Science, 2013, 339: 535–539

    Article  Google Scholar 

  8. Kreupl F. Nature, 2013, 501: 495–496

    Article  CAS  Google Scholar 

  9. Shulaker MM, Hills G, Patil N, Wei H, Chen HY, Wong HSP, Mitra S. Nature, 2013, 501: 526–530

    Article  CAS  Google Scholar 

  10. Zhang Y, Chang A, Cao J, Wang Q, Kim W, Li Y, Morris N, Yenilmez E, Kong J, Dai H. Appl Phys Lett, 2001, 79: 3155–3157

    Article  CAS  Google Scholar 

  11. Joselevich E, Lieber CM. Nano Lett, 2002, 2: 1137–1141

    Article  CAS  Google Scholar 

  12. Huang S, Cai X, Liu J. J Am Chem Soc, 2003, 125: 5636–5637

    Article  CAS  Google Scholar 

  13. Huang S, Maynor B, Cai X, Liu J. Adv Mater, 2003, 15: 1651–1655

    Article  CAS  Google Scholar 

  14. Huang L, Cui X, White B, O‘Brien SP. J Phys Chem B, 2004, 108: 16451–16456

    Article  CAS  Google Scholar 

  15. Huang S, Woodson M, Smalley R, Liu J. Nano Lett, 2004, 4: 1025–1028

    Article  CAS  Google Scholar 

  16. Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Li Y. Nano Lett, 2006, 6: 2987–2990

    Article  CAS  Google Scholar 

  17. Jin Z, Chu H, Wang J, Hong J, Tan W, Li Y. Nano Lett, 2007, 7: 2073–2079

    Article  CAS  Google Scholar 

  18. Ismach A, Segev L, Wachtel E, Joselevich E. Angew Chem Int Ed, 2004, 43: 6140–6143

    Article  CAS  Google Scholar 

  19. Ago H, Nakamura K, Ikeda K, Uehara N, Ishigami N, Tsuji M. Chem Phys Lett, 2005, 408: 433–438

    Article  CAS  Google Scholar 

  20. Han S, Liu X, Zhou C. J Am Chem Soc, 2005, 127: 5294–5295

    Article  CAS  Google Scholar 

  21. Ismach A, Kantorovich D, Joselevich E. J Am Chem Soc, 2005, 127: 11554–11555

    Article  CAS  Google Scholar 

  22. Kocabas C, Hur SH, Gaur A, Meitl MA, Shim M, Rogers JA. Small, 2005, 1: 1110–1116

    Article  CAS  Google Scholar 

  23. Kocabas C, Shim M, Rogers JA. J Am Chem Soc, 2006, 128: 4540–4541

    Article  CAS  Google Scholar 

  24. Yu Q, Qin G, Li H, Xia Z, Nian Y, Pei SS. J Phys Chem B, 2006, 110: 22676–22680

    Article  CAS  Google Scholar 

  25. Shadmi N, Geblinger N, Ismach A, Joselevich E. J Phys Chem C, 2014, 118: 14044–14050

    Article  CAS  Google Scholar 

  26. Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA. Nat Nanotech, 2007, 2: 230–236

    Article  CAS  Google Scholar 

  27. Kang SJ, Kocabas C, Kim HS, Cao Q, Meitl MA, Khang DY, Rogers JA. Nano Lett, 2007, 7: 3343–3348

    Article  CAS  Google Scholar 

  28. Ding L, Yuan D, Liu J. J Am Chem Soc, 2008, 130: 5428–5429

    Article  CAS  Google Scholar 

  29. Geblinger N, Ismach A, Joselevich E. Nat Nanotech, 2008, 3: 195–200

    Article  CAS  Google Scholar 

  30. Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M. Chem Phys Lett, 2002, 360: 229–234

    Article  CAS  Google Scholar 

  31. Bae EJ, Min YS, Kang D, Ko JH, Park W. Chem Mater, 2005, 17: 5141–5145

    Article  CAS  Google Scholar 

  32. Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari AC, Blackburn AM, Wang KY, Robertson J. Nano Lett, 2006, 6: 1107–1112

    Article  CAS  Google Scholar 

  33. Sen R, Govindaraj A, Rao CNR. Chem Mater, 1997, 9: 2078–2081

    Article  CAS  Google Scholar 

  34. Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, Dresselhaus MS. Appl Phys Lett, 1998, 72: 3282–3284

    Article  CAS  Google Scholar 

  35. Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE. Chem Phys Lett, 1999, 313: 91–97

    Article  CAS  Google Scholar 

  36. Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM. Science, 2002, 296: 884–886

    Article  CAS  Google Scholar 

  37. Li YL, Kinloch IA, Windle AH. Science, 2004, 304: 276–278

    Article  CAS  Google Scholar 

  38. Hou PX, Li WS, Zhao SY, Li GX, Shi C, Liu C, Cheng HM. ACS Nano, 2014, 8: 7156–7162

    Article  CAS  Google Scholar 

  39. Yu B, Liu C, Hou PX, Tian Y, Li S, Liu B, Li F, Kauppinen EI, Cheng HM. J Am Chem Soc, 2011, 133: 5232–5235

    Article  CAS  Google Scholar 

  40. Ren W, Li F, Bai S, Cheng HM. J Nanosci Nanotech, 2006, 6: 1339–1345

    Article  CAS  Google Scholar 

  41. Nasibulin AG, Kaskela A, Mustonen K, Anisimov AS, Ruiz V, Kivistö S, Rackauskas S, Timmermans MY, Pudas M, Aitchison B, Kauppinen M, Brown DP, Okhotnikov OG, Kauppinen EI. ACS Nano, 2011, 5: 3214–3221

    Article  CAS  Google Scholar 

  42. Zhou Z, Ci L, Song L, Yan X, Liu D, Yuan H, Gao Y, Wang J, Liu L, Zhou W, Wang G, Xie S. J Phys Chem B, 2004, 108: 10751–10753

    Article  CAS  Google Scholar 

  43. Li Y, Cui R, Ding L, Liu Y, Zhou W, Zhang Y, Jin Z, Peng F, Liu J. Adv Mater, 2010, 22: 1508–1515

    Article  CAS  Google Scholar 

  44. Yao Y, Dai X, Feng C, Zhang J, Liang X, Ding L, Choi W, Choi JY, Kim JM, Liu Z. Adv Mater, 2009, 21: 4158–4162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Science and Technology of China (2016YFA0201904) and the National Natural Science Foundation of China (21631002, U1632119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, R., Zhao, X., Li, R. et al. Preparation of horizontally aligned single-walled carbon nanotubes with floating catalyst. Sci. China Chem. 60, 516–520 (2017). https://doi.org/10.1007/s11426-017-9012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9012-y

Keywords

Navigation