Skip to main content
Log in

Clarification of copper species over Cu-SAPO-34 catalyst by DRIFTS and DFT study of CO adsorption

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, the nature, location and evolution of Cu+ ions in Cu-SAPO-34 are investigated by diffuse reflectance infrared Fourier transform spectrum (DRIFTS) of CO adsorption and density functional theory (DFT) calculation. By combination with DFT results, characteristic Cu+–CO bands located at 2154 and 2136 cm−1 are attributed to CO adsorbed on Cu+ ions located at sites I (in the plane of six-membered ring connected to the large cages) and site II (in the eight-membered ring cages near the tilted four membered ring) in the framework of H-SAPO-34 zeolite. Subsequently, both the influences of Cu loading and preparation method are considered and discussed. By varying the Cu loading, the site-occupation preference of Cu+ ions on site I is confirmed, especially at low Cu loadings. Through elevating the desorption temperature, migration of Cu+ ions is revealed because of the adsorption-induced effect. Furthermore, a facile and more efficient approach to introduce Cu+ ions into CHA zeolite, compared with solid-state ion exchange with CuCl and conventional ion exchange in aqueous solution, and the different preparation methods also result in different occupations of Cu+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang S, Wang Y, Wang Z, Yan B, Wang S, Gong J, Ma X. Appl Catal A-Gen, 2012, 417-418: 236–242

    Article  CAS  Google Scholar 

  2. Sobalik Z, Sazama P, Dedecek J, Wichterlová B. Appl Catal A-Gen, 2014, 474: 178–185

    Article  CAS  Google Scholar 

  3. Yahiro H, Iwamoto M. Appl Catal A-Gen, 2001, 222: 163–181

    Article  CAS  Google Scholar 

  4. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF. Appl Catal B-Environ, 2011, 102: 441–448

    Article  CAS  Google Scholar 

  5. Kefirov R, Penkova A, Hadjiivanov K, Dzwigaj S, Che M. Microporous Mesoporous Mater, 2008, 116: 180–187

    Article  CAS  Google Scholar 

  6. Brandenberger S, Kröcher O, Tissler A, Althoff R. Catal Rev, 2008, 50: 492–531

    Article  CAS  Google Scholar 

  7. Drake IJ, Zhang Y, Briggs D, Lim B, Chau T, Bell AT. J Phys Chem B, 2006, 110: 11654–11664

    Article  CAS  Google Scholar 

  8. Dang TTH, Bartoszek M, Schneider M, Hoang DL, Bentrup U, Martin A. Appl Catal B-Environ, 2012, 121-122: 115–122

    Article  CAS  Google Scholar 

  9. Sainz-Vidal A, Balmaseda J, Lartundo-Rojas L, Reguera E. Microporous Mesoporous Mater, 2014, 185: 113–120

    Article  CAS  Google Scholar 

  10. Engeldinger J, Richter M, Bentrup U. Phys Chem Chem Phys, 2012, 14: 2183–2191

    Article  CAS  Google Scholar 

  11. Engeldinger J, Domke C, Richter M, Bentrup U. Appl Catal A-Gen, 2010, 382: 303–311

    Article  CAS  Google Scholar 

  12. Zhan H, Huang S, Li Y, Lv J, Wang S, Ma X. Catal Sci Technol, 2015, 5: 4378–4389

    Article  CAS  Google Scholar 

  13. Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM. J Am Chem Soc, 1984, 16: 6092–6093

    Article  Google Scholar 

  14. Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF. J Catal, 2010, 275: 187–190

    Article  CAS  Google Scholar 

  15. Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A. Appl Catal B-Environ, 2012, 127: 273–280

    Article  Google Scholar 

  16. Fickel DW, Lobo RF. J Phys Chem C, 2009, 114: 1633–1640

    Article  Google Scholar 

  17. Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, Weckhuysen BM, Beale AM. J Phys Chem C, 2012, 116: 4809–4818

    Article  CAS  Google Scholar 

  18. Korhonen ST, Fickel DW, Lobo RF, Weckhuysen BM, Beale AM. Chem Commun, 2011, 47: 800–802

    Article  CAS  Google Scholar 

  19. Kwak HJ, Zhu H, Lee JH, Peden CHF, Szanyi J. Chem Commun, 2012, 48: 4758–4760

    Article  CAS  Google Scholar 

  20. Ma L, Cheng Y, Cavataio G, McCabe RW, Fu L, Li J. Chem Eng J, 2013, 225: 323–330

    Article  CAS  Google Scholar 

  21. Fan S, Xue J, Yu T, Fan D, Hao T, Shen M, Li W. Catal Sci Technol, 2013, 3: 2357–2364

    Article  CAS  Google Scholar 

  22. Wang L, Li W, Qi G, Weng D. J Catal, 2012, 289: 21–29

    Article  CAS  Google Scholar 

  23. Lamberti C, Zecchina A, Groppo E, Bordiga S. Chem Soc Rev, 2010, 39: 4951–5001

    Article  CAS  Google Scholar 

  24. Zaera F. Chem Soc Rev, 2014, 43: 7624–7663

    Article  CAS  Google Scholar 

  25. Delley B. J Chem Phys, 2000, 113: 7756–7764

    Article  CAS  Google Scholar 

  26. Ortmann F, Bechstedt F, Schmidt WG. Phys Rev B, 2006, 73: 205101

    Article  Google Scholar 

  27. Jeanvoine Y, Ángyán JG, Kresse G, Hafner J. J Phys Chem B, 1998, 102: 5573–5580

    Article  CAS  Google Scholar 

  28. Uzunova EL, Mikosch H. Phys Chem Chem Phys, 2016, 18: 11233–11242

    Article  CAS  Google Scholar 

  29. Zhang R, Mc Ewen JS, Kollár M, Gao F, Wang Y, Szanyi J, Peden CHF. ACS Catal, 2014, 4: 4093–4105

    Article  CAS  Google Scholar 

  30. Hadjiivanov K, Knözinger H. Phys Chem Chem Phys, 2001, 3: 1132–1137

    Article  CAS  Google Scholar 

  31. Fanning PE, Vannice MA. J Catal, 2002, 207: 166–182

    Article  CAS  Google Scholar 

  32. Palomino GT, Bordiga S, Zecchina A, Marra GL, Lamberti C. J Phys Chem B, 2000, 104: 8641–8651

    Article  Google Scholar 

  33. Hadjiicanov KI, Vayssilov GN. Adv Catal, 2002, 34: 307–511

    Google Scholar 

  34. Rejmak P, Sierka M, Sauer J. Phys Chem Chem Phys, 2007, 9: 5446–5456

    Article  CAS  Google Scholar 

  35. Bulánek R, Drobná H, Nachtigall P, Rubes M, Bludský O. Phys Chem Chem Phys, 2006, 8: 5535–5542

    Article  Google Scholar 

  36. Huang S, Zhang JJ, Wang Y, Chen P, Wang S, Ma X. Ind Eng Chem Res, 2014, 53: 5838–5845

    Article  CAS  Google Scholar 

  37. Zhang Y, Drake IJ, Bell AT. Chem Mater, 2006, 18: 2347–2356

    Article  CAS  Google Scholar 

  38. Berthomieu D, Delahay G. Catal Rev, 2006, 48: 269–313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21325626, 21406120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Ma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Li, Y., Huang, S. et al. Clarification of copper species over Cu-SAPO-34 catalyst by DRIFTS and DFT study of CO adsorption. Sci. China Chem. 60, 912–919 (2017). https://doi.org/10.1007/s11426-016-9063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-9063-2

Keywords

Navigation