Advertisement

Science China Chemistry

, Volume 60, Issue 6, pp 721–729 | Cite as

Graphene nanopores toward DNA sequencing: a review of experimental aspects

  • Wei Chen
  • Guo-Chang Liu
  • Jun Ouyang
  • Meng-Juan Gao
  • Bo Liu
  • Yuan-Di ZhaoEmail author
Reviews

Abstract

Nanopores for DNA sequencing have drawn much attention due to their potentials to achieve amplification-free, low-cost, and high-throughput analysis of nuclei acids. The material configuration and fabrication of the nanopore has become one important consideration in the nanopore based DNA sequencing research. Among various materials, the newly emerged graphene has brought more opportunities to the development of sequencing technology because of its unique structures and properties. This review mainly focuses on the experimental aspects of graphene nanopore research including the nanopore fabrication methods and processes. Meanwhile, the challenges in the present graphene nanopore research including hydrophobicity, translocation velocity and noise are also addressed and discussed.

Keywords

graphene nanopore DNA sequencing nanopore fabrication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81471697), the Key Technology R&D Program of Hubei Province (2014BBB003), Yellow Crane Talent (Science & Technology) Program of Wuhan City and Applied Basic Research Program of Wuhan City (2016060101010044, 2016060101010048), and the Fundamental Research Funds for the Central Universities (2016YXMS253). We also thank the Analytical and Testing Center (HUST) for the help of measurement.

References

  1. 1.
    Heerema SJ, Dekker C. Nat Nanotech, 2016, 11: 127–136CrossRefGoogle Scholar
  2. 2.
    Venkatesan BM, Bashir R. Nat Nanotech, 2011, 6: 615–624CrossRefGoogle Scholar
  3. 3.
    Feng Y, Zhang Y, Ying C, Wang D, Du C. Geno Prot Bioinfo, 2015, 13: 4–16CrossRefGoogle Scholar
  4. 4.
    Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Proc Natl Acad Sci USA, 1996, 93: 13770–13773CrossRefGoogle Scholar
  5. 5.
    Stefureac R, Long YT, Kraatz HB, Howard P, Lee JS. Biochemistry, 2006, 45: 9172–9179CrossRefGoogle Scholar
  6. 6.
    Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH. Nat Biotechnol, 2012, 30: 349–353CrossRefGoogle Scholar
  7. 7.
    Soskine M, Biesemans A, Moeyaert B, Cheley S, Bayley H, Maglia G. Nano Lett, 2012, 12: 4895–4900CrossRefGoogle Scholar
  8. 8.
    Mohammad MM, Iyer R, Howard KR, McPike MP, Borer PN, Movileanu L. J Am Chem Soc, 2012, 134: 9521–9531CrossRefGoogle Scholar
  9. 9.
    Wendell D, Jing P, Geng J, Subramaniam V, Lee TJ, Montemagno C, Guo P. Nat Nanotech, 2009, 4: 765–772CrossRefGoogle Scholar
  10. 10.
    Wang HY, Li Y, Qin LX, Heyman A, Shoseyov O, Willner I, Long YT, Tian H. Chem Commun, 2013, 49: 1741–1743CrossRefGoogle Scholar
  11. 11.
    Healy K, Schiedt B, Morrison AP. Nanomedicine, 2007, 2: 875–897CrossRefGoogle Scholar
  12. 12.
    Li J, Gershow M, Stein D, Brandin E, Golovchenko JA. Nat Mater, 2003, 2: 611–615CrossRefGoogle Scholar
  13. 13.
    Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C. Nat Mater, 2003, 2: 537–540CrossRefGoogle Scholar
  14. 14.
    Venkatesan BM, Dorvel B, Yemenicioglu S, Watkins N, Petrov I, Bashir R. Adv Mater, 2009, 21: 2771–2776CrossRefGoogle Scholar
  15. 15.
    Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. Nature, 2001, 412: 166–169CrossRefGoogle Scholar
  16. 16.
    Gierak J, Madouri A, Biance AL, Bourhis E, Patriarche G, Ulysse C, Lucot D, Lafosse X, Auvray L, Bruchhaus L, Jede R. Microelectron Eng, 2007, 84: 779–783CrossRefGoogle Scholar
  17. 17.
    Nilsson J, Lee JRI, Ratto TV, Létant SE. Adv Mater, 2006, 18: 427–431CrossRefGoogle Scholar
  18. 18.
    Zhang J, You L, Ye H, Yu D. Nanotechnology, 2007, 18: 155303CrossRefGoogle Scholar
  19. 19.
    Knez M, Nielsch K, Niinistö L. Adv Mater, 2007, 19: 3425–3438CrossRefGoogle Scholar
  20. 20.
    Comer J, Aksimentiev A. Nanoscale, 2016, 8: 9600–9613CrossRefGoogle Scholar
  21. 21.
    Park HJ, Ryu GH, Lee Z. Appl Microsc, 2015, 45: 107–114CrossRefGoogle Scholar
  22. 22.
    Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA. Nature, 2010, 467: 190–193CrossRefGoogle Scholar
  23. 23.
    Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson ATC, Drndić M. Nano Lett, 2010, 10: 2915–2921CrossRefGoogle Scholar
  24. 24.
    Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK, Dekker C. Nano Lett, 2010, 10: 3163–3167CrossRefGoogle Scholar
  25. 25.
    Cai Q, Ledden B, Krueger E, Golovchenko JA, Li J. J Appl Phys, 2006, 100: 024914CrossRefGoogle Scholar
  26. 26.
    Bacri L, Oukhaled AG, Schiedt B, Patriarche G, Bourhis E, Gierak J, Pelta J, Auvray L. J Phys Chem B, 2011, 115: 2890–2898CrossRefGoogle Scholar
  27. 27.
    Deng T, Li M, Wang Y, Liu Z. Sci Bull, 2015, 60: 304–319CrossRefGoogle Scholar
  28. 28.
    Hlawacek G, Veligura V, van Gastel R, Poelsema B. J Vac Sci Technol B, 2014, 32: 020801CrossRefGoogle Scholar
  29. 29.
    Kwok H, Waugh M, Bustamante J, Briggs K, Tabard-Cossa V. Adv Funct Mater, 2014, 24: 7745–7753CrossRefGoogle Scholar
  30. 30.
    Tseng AA. Small, 2005, 1: 924–939CrossRefGoogle Scholar
  31. 31.
    Wang D, Harrer S, Luan B, Stolovitzky G, Peng H, Afzali-Ardakani A. Sci Rep, 2014, 4: 3985CrossRefGoogle Scholar
  32. 32.
    Bai J, Wang D, Nam SW, Peng H, Bruce R, Gignac L, Brink M, Kratschmer E, Rossnagel S, Waggoner P, Reuter K, Wang C, Astier Y, Balagurusamy V, Luan B, Kwark Y, Joseph E, Guillorn M, Polonsky S, Royyuru A, Papa Rao S, Stolovitzky G. Nanoscale, 2014, 6: 8900–8906CrossRefGoogle Scholar
  33. 33.
    Rollings RC, Kuan AT, Golovchenko JA. Nat Commun, 2016, 7: 11408CrossRefGoogle Scholar
  34. 34.
    Tapasztó L, Dobrik G, Lambin P, Biró LP. Nat Nanotech, 2008, 3: 397–401CrossRefGoogle Scholar
  35. 35.
    Miles BN, Ivanov AP, Wilson KA, Doğan F, Japrung D, Edel JB. Chem Soc Rev, 2013, 42: 15–28CrossRefGoogle Scholar
  36. 36.
    Park S, Ruoff RS. Nat Nanotech, 2009, 4: 217–224CrossRefGoogle Scholar
  37. 37.
    Fischbein MD, Drndić M. Appl Phys Lett, 2008, 93: 113107CrossRefGoogle Scholar
  38. 38.
    Heerema SJ, Schneider GF, Rozemuller M, Vicarelli L, Zandbergen HW, Dekker C. Nanotechnology, 2015, 26: 074001CrossRefGoogle Scholar
  39. 39.
    Schneider GF, Xu Q, Hage S, Luik S, Spoor JNH, Malladi S, Zandbergen H, Dekker C. Nat Commun, 2013, 4: 2619Google Scholar
  40. 40.
    Xu Q, Wu MY, Schneider GF, Houben L, Malladi SK, Dekker C, Yucelen E, Dunin-Borkowski RE, Zandbergen HW. ACS Nano, 2013, 7: 1566–1572CrossRefGoogle Scholar
  41. 41.
    Freedman KJ, Ahn CW, Kim MJ. ACS Nano, 2013, 7: 5008–5016CrossRefGoogle Scholar
  42. 42.
    Venkatesan BM, Estrada D, Banerjee S, Jin X, Dorgan VE, Bae MH, Aluru NR, Pop E, Bashir R. ACS Nano, 2012, 6: 441–450CrossRefGoogle Scholar
  43. 43.
    Xu T, Yin K, Xie X, He L, Wang B, Sun L. Small, 2012, 8: 3422–3426CrossRefGoogle Scholar
  44. 44.
    Song B, Schneider GF, Xu Q, Pandraud G, Dekker C, Zandbergen H. Nano Lett, 2011, 11: 2247–2250CrossRefGoogle Scholar
  45. 45.
    Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A. Science, 2009, 323: 1705–1708CrossRefGoogle Scholar
  46. 46.
    Barreiro A, Boerrnert F, Avdoshenko SM, Rellinghaus B, Cuniberti G, Ruemmeli MH, Vandersypen LMK. Sci Rep, 2013, 3: 1115CrossRefGoogle Scholar
  47. 47.
    Lu N, Wang J, Floresca HC, Kim MJ. Carbon, 2012, 50: 2961–2965CrossRefGoogle Scholar
  48. 48.
    Kotakoski J, Krasheninnikov AV, Nordlund K. Jnl Comp Theo Nano, 2007, 4: 1153–1159CrossRefGoogle Scholar
  49. 49.
    Ataca C, Ciraci S. Phys Rev B, 2011, 83: 235417CrossRefGoogle Scholar
  50. 50.
    Tsetseris L, Pantelides ST. Carbon, 2009, 47: 901–908CrossRefGoogle Scholar
  51. 51.
    Kwok H, Briggs K, Tabard-Cossa V. PLoS ONE, 2014, 9: e92880CrossRefGoogle Scholar
  52. 52.
    Briggs K, Kwok H, Tabard-Cossa V. Small, 2014, 10: 2077–2086CrossRefGoogle Scholar
  53. 53.
    Briggs K, Charron M, Kwok H, Le T, Chahal S, Bustamante J, Waugh M, Tabard-Cossa V. Nanotechnology, 2015, 26: 084004CrossRefGoogle Scholar
  54. 54.
    Tahvildari R, Beamish E, Tabard-Cossa V, Godin M. Lab Chip, 2015, 15: 1407–1411CrossRefGoogle Scholar
  55. 55.
    Ying C, Zhang Y, Feng Y, Zhou D, Wang D, Xiang Y, Zhou W, Chen Y, Du C, Tian J. Appl Phys Lett, 2016, 109: 063105CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Chen Y, Fu Y, Ying C, Feng Y, Huang Q, Wang C, Pei DS, Wang D. Sci Rep, 2016, 6: 27959CrossRefGoogle Scholar
  57. 57.
    Kuan AT, Lu B, Xie P, Szalay T, Golovchenko JA. Appl Phys Lett, 2015, 106: 203109CrossRefGoogle Scholar
  58. 58.
    Crick CR, Sze JYY, Rosillo-Lopez M, Salzmann CG, Edel JB. ACS Appl Mater Interfaces, 2015, 7: 18188–18194CrossRefGoogle Scholar
  59. 59.
    Bell DC, Lemme MC, Stern LA, Williams JR, Marcus CM. Nanotechnology, 2009, 20: 455301CrossRefGoogle Scholar
  60. 60.
    Yang J, Ferranti DC, Stern LA, Sanford CA, Huang J, Ren Z, Qin LC, Hall AR. Nanotechnology, 2011, 22: 285310CrossRefGoogle Scholar
  61. 61.
    Galla L, Meyer AJ, Spiering A, Sischka A, Mayer M, Hall AR, Reimann P, Anselmetti D. Nano Lett, 2014, 14: 4176–4182CrossRefGoogle Scholar
  62. 62.
    Sischka A, Galla L, Meyer AJ, Spiering A, Knust S, Mayer M, Hall AR, Beyer A, Reimann P, Gölzhäuser A, Anselmetti D. Analyst, 2015, 140: 4843–4847CrossRefGoogle Scholar
  63. 63.
    Zahid OK, Zhao BS, He C, Hall AR. Sci Rep, 2016, 6: 29565CrossRefGoogle Scholar
  64. 64.
    Carlsen AT, Zahid OK, Ruzicka JA, Taylor EW, Hall AR. Nano Lett, 2014, 14: 5488–5492CrossRefGoogle Scholar
  65. 65.
    Zahid OK, Wang F, Ruzicka JA, Taylor EW, Hall AR. Nano Lett, 2016, 16: 2033–2039CrossRefGoogle Scholar
  66. 66.
    Lemme MC, Bell DC, Williams JR, Stern LA, Baugher BWH, Jarillo-Herrero P, Marcus CM. ACS Nano, 2009, 3: 2674–2676CrossRefGoogle Scholar
  67. 67.
    Kalhor N, Boden SA, Mizuta H. Microelectron Eng, 2014, 114: 70–77CrossRefGoogle Scholar
  68. 68.
    Abbas AN, Liu G, Liu B, Zhang L, Liu H, Ohlberg D, Wu W, Zhou C. ACS Nano, 2014, 8: 1538–1546CrossRefGoogle Scholar
  69. 69.
    Iberi V, Vlassiouk I, Zhang XG, Matola B, Linn A, Joy DC, Rondinone AJ. Sci Rep, 2015, 5: 11952CrossRefGoogle Scholar
  70. 70.
    Archanjo BS, Fragneaud B, Gustavo Cançado L, Winston D, Miao F, Alberto Achete C, Medeiros-Ribeiro G. Appl Phys Lett, 2014, 104: 193114CrossRefGoogle Scholar
  71. 71.
    Hemamouche A, Morin A, Bourhis E, Toury B, Tarnaud E, Mathé J, Guégan P, Madouri A, Lafosse X, Ulysse C, Guilet S, Patriarche G, Auvray L, Montel F, Wilmart Q, Plaçais B, Yates J, Gierak J. Microelectron Eng, 2014, 121: 87–91CrossRefGoogle Scholar
  72. 72.
    Russo CJ, Golovchenko JA. Proc Natl Acad Sci USA, 2012, 109: 5953–5957CrossRefGoogle Scholar
  73. 73.
    Wang H, Kurata K, Fukunaga T, Takamatsu H, Zhang X, Ikuta T, Takahashi K, Nishiyama T, Ago H, Takata Y. Carbon, 2016, 99: 564–570CrossRefGoogle Scholar
  74. 74.
    Zan R, Bangert U, Ramasse Q, Novoselov KS. J Phys Chem Lett, 2012, 3: 953–958CrossRefGoogle Scholar
  75. 75.
    Ramasse QM, Zan R, Bangert U, Boukhvalov DW, Son YW, Novoselov KS. ACS Nano, 2012, 6: 4063–4071CrossRefGoogle Scholar
  76. 76.
    Egerton RF, Li P, Malac M. Micron, 2004, 35: 399–409CrossRefGoogle Scholar
  77. 77.
    Meyer JC, Girit CO, Crommie MF, Zettl A. Appl Phys Lett, 2008, 92: 123110CrossRefGoogle Scholar
  78. 78.
    Lehtinen PO, Foster AS, Ayuela A, Krasheninnikov A, Nordlund K, Nieminen RM. Phys Rev Lett, 2003, 91: 017202CrossRefGoogle Scholar
  79. 79.
    Telling RH, Heggie MI. Philos Mag, 2007, 87: 4797–4846CrossRefGoogle Scholar
  80. 80.
    Banhart F. Nano Lett, 2001, 1: 329–332CrossRefGoogle Scholar
  81. 81.
    Hass J, Feng R, Li T, Li X, Zong Z, de Heer WA, First PN, Conrad EH, Jeffrey CA, Berger C. Appl Phys Lett, 2006, 89: 143106CrossRefGoogle Scholar
  82. 82.
    Yasuda A, Kawase N, Banhart F, Mizutani W, Shimizu T, Tokumoto H. J Phys Chem B, 2002, 106: 1849–1852CrossRefGoogle Scholar
  83. 83.
    Goyal G, Bok Lee Y, Darvish A, Ahn CW, Kim MJ. Nanotechnology, 2016, 27: 495301CrossRefGoogle Scholar
  84. 84.
    Zan R, Ramasse QM, Bangert U, Novoselov KS. Nano Lett, 2012, 12: 3936–3940CrossRefGoogle Scholar
  85. 85.
    Zhao J, Deng Q, Bachmatiuk A, Sandeep G, Popov A, Eckert J, Rümmeli MH. Science, 2014, 343: 1228–1232CrossRefGoogle Scholar
  86. 86.
    Lee J, Yang Z, Zhou W, Pennycook SJ, Pantelides ST, Chisholm MF. Proc Natl Acad Sci USA, 2014, 111: 7522–7526CrossRefGoogle Scholar
  87. 87.
    Gogotsi Y, Libera JA, Kalashnikov N, Yoshimura M. Science, 2000, 290: 317–320CrossRefGoogle Scholar
  88. 88.
    Gogotsi Y, Dimovski S, Libera JA. Carbon, 2002, 40: 2263–2267CrossRefGoogle Scholar
  89. 89.
    He K, Robertson AW, Gong C, Allen CS, Xu Q, Zandbergen H, Grossman JC, Kirkland AI, Warner JH. Nanoscale, 2015, 7: 11602–11610CrossRefGoogle Scholar
  90. 90.
    Carson S, Wanunu M. Nanotechnology, 2015, 26: 074004CrossRefGoogle Scholar
  91. 91.
    Postma HWC. Nano Lett, 2010, 10: 420–425CrossRefGoogle Scholar
  92. 92.
    Prasongkit J, Grigoriev A, Pathak B, Ahuja R, Scheicher RH. Nano Lett, 2011, 11: 1941–1945CrossRefGoogle Scholar
  93. 93.
    Hall JE. J Gen Physiol, 1975, 66: 531–532CrossRefGoogle Scholar
  94. 94.
    Garaj S, Liu S, Golovchenko JA, Branton D. Proc Natl Acad Sci USA, 2013, 110: 12192–12196CrossRefGoogle Scholar
  95. 95.
    Yan F, Zhang M, Li J. Adv Healthc Mater, 2014, 3: 313–331CrossRefGoogle Scholar
  96. 96.
    Puster M, Rodríguez-Manzo JA, Balan A, Drndić M. ACS Nano, 2013, 7: 11283–11289CrossRefGoogle Scholar
  97. 97.
    Min SK, Kim WY, Cho Y, Kim KS. Nat Nanotech, 2011, 6: 162–165CrossRefGoogle Scholar
  98. 98.
    Saha KK, Drndić M, Nikolić BK. Nano Lett, 2012, 12: 50–55CrossRefGoogle Scholar
  99. 99.
    Traversi F, Raillon C, Benameur SM, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A. Nat Nanotech, 2013, 8: 939–945CrossRefGoogle Scholar
  100. 100.
    Harrell CC, Choi Y, Horne LP, Baker LA, Siwy ZS, Martin CR. Langmuir, 2006, 22: 10837–10843CrossRefGoogle Scholar
  101. 101.
    Iliafar S, Wagner K, Manohar S, Jagota A, Vezenov D. J Phys Chem C, 2012, 116: 13896–13903CrossRefGoogle Scholar
  102. 102.
    Yokota K, Tsutsui M, Taniguchi M. RSC Adv, 2014, 4: 15886–15899CrossRefGoogle Scholar
  103. 103.
    Smeets RMM, Keyser UF, Dekker NH, Dekker C. Proc Natl Acad Sci USA, 2008, 105: 417–421CrossRefGoogle Scholar
  104. 104.
    Tabard-Cossa V, Trivedi D, Wiggin M, Jetha NN, Marziali A. Nanotechnology, 2007, 18: 305505CrossRefGoogle Scholar
  105. 105.
    Kumar A, Park KB, Kim HM, Kim KB. Nanotechnology, 2013, 24: 495503CrossRefGoogle Scholar
  106. 106.
    Tsutsui M, Taniguchi M, Yokota K, Kawai T. Nat Nanotech, 2010, 5: 286–290CrossRefGoogle Scholar
  107. 107.
    Shankla M, Aksimentiev A. Nat Commun, 2014, 5: 5171CrossRefGoogle Scholar
  108. 108.
    Liang L, Zhang Z, Shen J, Zhe K, Wang Q, Wu T, Ågren H, Tu Y. RSC Adv, 2014, 4: 50494–50502CrossRefGoogle Scholar
  109. 109.
    Liang L, Cui P, Wang Q, Wu T, Ågren H, Tu Y. RSC Adv, 2013, 3: 2445–2453CrossRefGoogle Scholar
  110. 110.
    Lv W, Chen M, Wu R. Soft Matter, 2013, 9: 960–966CrossRefGoogle Scholar
  111. 111.
    Wells DB, Belkin M, Comer J, Aksimentiev A. Nano Lett, 2012, 12: 4117–4123CrossRefGoogle Scholar
  112. 112.
    Sathe C, Zou X, Leburton JP, Schulten K. ACS Nano, 2011, 5: 8842–8851CrossRefGoogle Scholar
  113. 113.
    Nelson T, Zhang B, Prezhdo OV. Nano Lett, 2010, 10: 3237–3242CrossRefGoogle Scholar
  114. 114.
    Li J, Zhang Y, Yang J, Bi K, Ni Z, Li D, Chen Y. Phys Rev E, 2013, 87: 062707CrossRefGoogle Scholar
  115. 115.
    Banerjee S, Wilson J, Shim J, Shankla M, Corbin EA, Aksimentiev A, Bashir R. Adv Funct Mater, 2015, 25: 936–946CrossRefGoogle Scholar
  116. 116.
    Shi C, Kong Z, Sun T, Liang L, Shen J, Zhao Z, Wang Q, Kang Z, Ågren H, Tu Y. RSC Adv, 2015, 5: 9389–9395CrossRefGoogle Scholar
  117. 117.
    Girdhar A, Sathe C, Schulten K, Leburton JP. Proc Natl Acad Sci USA, 2013, 110: 16748–16753CrossRefGoogle Scholar
  118. 118.
    He Y, Tsutsui M, Ryuzaki S, Yokota K, Taniguchi M, Kawai T. Npg Asia Mater, 2014, 6: e104Google Scholar
  119. 119.
    McFarland HL, Ahmed T, Zhu JX, Balatsky AV, Haraldsen JT. J Phys Chem Lett, 2015, 6: 2616–2621CrossRefGoogle Scholar
  120. 120.
    Avdoshenko SM, Nozaki D, Gomes da Rocha C, González JW, Lee MH, Gutierrez R, Cuniberti G. Nano Lett, 2013, 13: 1969–1976CrossRefGoogle Scholar
  121. 121.
    Kong Z, Zheng W, Wang Q, Wang H, Xi F, Liang L, Shen JW. J Mater Chem B, 2015, 3: 4814–4820CrossRefGoogle Scholar
  122. 122.
    Kundu S, Karmakar SN. Nanotechnology, 2016, 27: 135101CrossRefGoogle Scholar
  123. 123.
    Qiu H, Girdhar A, Schulten K, Leburton JP. ACS Nano, 2016, 10: 4482–4488CrossRefGoogle Scholar
  124. 124.
    Fotouhi B, Ahmadi V, Abasifard M, Roohi R. J Phys Chem C, 2016, 120: 13693–13700CrossRefGoogle Scholar
  125. 125.
    Kulkarni M, Mukherjee A. RSC Adv, 2016, 6: 46019–46029CrossRefGoogle Scholar
  126. 126.
    Wen C, Zeng S, Zhang Z, Hjort K, Scheicher R, Zhang SL. Nanotechnology, 2016, 27: 215502CrossRefGoogle Scholar
  127. 127.
    Al-Dirini F, Mohammed MA, Hossain MS, Hossain FM, Nirmalathas A, Skafidas E. Nanoscale, 2016, 8: 10066–10077CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Wei Chen
    • 1
  • Guo-Chang Liu
    • 1
  • Jun Ouyang
    • 1
  • Meng-Juan Gao
    • 1
  • Bo Liu
    • 1
  • Yuan-Di Zhao
    • 1
    Email author
  1. 1.Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations