Science China Chemistry

, Volume 59, Issue 4, pp 405–411 | Cite as

Electrochemical capacitors based on the composite of graphene and nickel foam

Articles

Abstract

An improved Hummers method was developed for the simple and efficient production of high-quality graphene oxide (GO), and the composite of GO and nickel foam (NF) (GO/NF) was fabricated by ultrasonication-vacuum-assisted deposition of an aqueous solution of GO on NF. After chemical or thermal reduction, the composite of reduced GO and nickel foam (rGO/NF) was obtained. The electrochemical capacitance performance of rGO/NF was investigated using cyclic voltammetry and galvanostatic charge/discharge measurements. The chemically reduced rGO/NF composite (C-rGO/NF) exhibited high specific capacitance of 379 F/g at 1.0 A/g and 266.5 F/g at 10 A/g. We also prepared thermally reduced graphene oxide at 473 K in order to illuminate the difference in effect between the chemical and low-temperature thermal reduction methods on electrochemical properties. The cycling performance of thermally reduced rGO/NF composite (T-rGO/NF) and C-rGO/NF had ~91% and ~95% capacitance retention after 2000 cycles in a 6 mol/L KOH electrolyte, respectively. Electrochemical experiments indicated that the obtained rGO/NF has very good capacitive performance and could be used as a potential application of electrochemical capacitors. Our work revealed high electrochemical capacitor performance of rGO/NF composite and provided a facile method of rGO/NF preparation.

Keywords

electrochemical capacitor graphene oxide nickel foam reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu CG, Yu ZN, Neff D, Zhamu A, Jiang B. Nano Lett, 2010, 10: 4863–4868CrossRefGoogle Scholar
  2. 2.
    Han JW, Zhang LL, Lee S, Oh J, Lee K, Potts J, Ji J, Zhao X, Ruoff RS, Park S. ACS Nano, 2013, 7: 19–26CrossRefGoogle Scholar
  3. 3.
    Mahmood N, Zhang CZ, Yin H, Hou YL. J Mater Chem A, 2014, 2: 15–32CrossRefGoogle Scholar
  4. 4.
    Chabot V, Higgins D, Yu A, Xiao XC, Chen ZW, Zhang JJ. Energy Environ Sci, 2014, 7: 1564–1596CrossRefGoogle Scholar
  5. 5.
    Sun YQ, Shi GQ. J Polym Sci Pol Phys, 2013, 51: 231–253CrossRefGoogle Scholar
  6. 6.
    Ning GQ, Fan ZJ, Wang G, Gao JS, Qian WZ, Wei F. Chem Commun, 2011, 47: 5976–5978CrossRefGoogle Scholar
  7. 7.
    Stoller M, Park S, Zhu YW, An JH, Ruoff RS. Nano Lett, 2008, 8: 3498–3502CrossRefGoogle Scholar
  8. 8.
    Raccichini R, Varzi R, Passerini S, Scrosati B. Nat Mater, 2015, 14: 271–279CrossRefGoogle Scholar
  9. 9.
    Zhang QH, Li YG, Wang HZ, Richard B. Chem Soc Rev, 2015, 44: 3639–3665CrossRefGoogle Scholar
  10. 10.
    Ren GF, Pana X, Baynea S, Fan ZY. Carbon, 2014, 71: 94–101CrossRefGoogle Scholar
  11. 11.
    Reina A, Jia XT, Ho J, Nezich D, Son H, Bulovic V, Kong J. Nano Lett, 2009, 9: 30–35CrossRefGoogle Scholar
  12. 12.
    Park HJ, Meyer J, Roth S, Skakalova V. Carbon, 2010, 48: 1088–1094CrossRefGoogle Scholar
  13. 13.
    Xu YX, Lin ZY, Huang XQ, Liu Y, Huang Y, Duan XF. ACS Nano, 2013, 7: 4042–4049CrossRefGoogle Scholar
  14. 14.
    Wang H, Feng HB, Li JH. Small, 2014, 10: 2165–2181CrossRefGoogle Scholar
  15. 15.
    Chen J, Li C, Shi GQ. J Phys Chem Lett, 2013, 4: 1244–1253CrossRefGoogle Scholar
  16. 16.
    Hummers WS, Offeman RE. J Am Chem Soc, 1958, 80: 1339CrossRefGoogle Scholar
  17. 17.
    Ang PK, Wang S, Bao Q, Loh KP. ACS Nano, 2009, 3: 3587–3594CrossRefGoogle Scholar
  18. 18.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM. ACS Nano, 2010, 4: 4806–4814CrossRefGoogle Scholar
  19. 19.
    Chen J, Yao B, Li C, Shi GQ. Carbon, 2013, 64: 225–229CrossRefGoogle Scholar
  20. 20.
    Zhao JP, Pei S, Ren W, Gao L, Cheng H. ACS Nano, 2010, 4: 5245–5252CrossRefGoogle Scholar
  21. 21.
    Zhang H, Bhat VV, Gallego NC, Contescu CI. ACS Appl Mater Interf, 2012, 4: 3239–3246CrossRefGoogle Scholar
  22. 22.
    Lucchese M, Stavale F, Martins E, Jorio A. Carbon, 2010, 48: 1592–1597CrossRefGoogle Scholar
  23. 23.
    Konstantin N, Ozbas B, Hannes C, Car R. Nano Lett, 2008, 8: 36–41CrossRefGoogle Scholar
  24. 24.
    Chen J, Li Y, Huang L, Li C, Shi GQ. Carbon, 2015, 81: 826–834CrossRefGoogle Scholar
  25. 25.
    Li ZF, Zhang H, Liu Q, Sun L, Stanciu L, Xie J. ACS Appl Mater Interf, 2013, 5: 2685–2691CrossRefGoogle Scholar
  26. 26.
    Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T. Carbon, 2012, 50: 1699–17034CrossRefGoogle Scholar
  27. 27.
    Wen B, Cao MS, Lu MM, Cao W, Shi H, Liu J, Wang XX, Jin HB, Fang XY, Wang WZ, Yuan J. Adv Mater, 2014, 26: 3484–3489CrossRefGoogle Scholar
  28. 28.
    Chen J, Sheng KX, Luo PH, Li C, Shi GQ. Adv Mater, 2012, 24: 4569–4573CrossRefGoogle Scholar
  29. 29.
    Xie YB, Zhan YY. J Porous Mater, 2015, 22: 403–412CrossRefGoogle Scholar
  30. 30.
    Zhou XL, Wang M, Lian J, Lian YF. Sci China Tech Sci, 2014, 57: 278–283CrossRefGoogle Scholar
  31. 31.
    Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH, Ji Y, Yu ZZ. Polymer, 2010, 51: 1191–1196CrossRefGoogle Scholar
  32. 32.
    Ji JY, Zhang LL, Ji HX, Li Y, Zhang FB, Ruoff RS. ACS Nano, 2013, 7: 6237–6243CrossRefGoogle Scholar
  33. 33.
    Wang L, Li X, Guo T, Yan X, Tay B. Int J Hydrogen Energ, 2014, 39: 7876–7884CrossRefGoogle Scholar
  34. 34.
    Ye S, Feng JC, Wu PY. ACS Appl Mater Interf, 2013, 5: 7122–7129CrossRefGoogle Scholar
  35. 35.
    Xiao T, Hu X, Heng B, Huang X. J Alloy Compd, 2013, 549: 147–151CrossRefGoogle Scholar
  36. 36.
    Burke A. J Power Sources, 2000, 91: 37–50CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education; School of Chemistry and Materials ScienceHeilongjiang UniversityHarbinChina

Personalised recommendations