Science China Chemistry

, Volume 60, Issue 5, pp 591–601 | Cite as

Recent advances in DNAzyme-based gene silencing

  • Huanhuan Fan
  • Xiaobing Zhang
  • Yi Lu


DNAzymes, generated through in vitro selection processes, are single-stranded DNA catalysts that can catalyze a wide variety of reactions, such as RNA or DNA cleavage and ligation or DNA phosphorylation. Based on specific cofactor dependence and potent catalytic ability, DNAzymes have been extensively used to develop highly sensitive and specific sensing platforms for metal ions, small molecules, and biomacromolecules. However, in spite of their multiple strong enzymatic turnover properties, few reports have addressed the potential application of RNA-cleaving DNAzymes as therapeutic gene-silencing agents. The main challenges are being met with low efficiency of cellular uptake, instability and the lack of sufficient cofactors for cellular or in vivo study, which have limited the development of DNAzymes for clinical application. In recent years, substantial progress has been made to enhance the delivery efficiency and stability of DNAzymes by developing variety of methods. Smart metal oxide nanomaterials have also been used to meet the requirement of cofactors in situ. This review focuses on the gene silencing application of DNAzymes as well as their physicochemical properties. Methods of increasing the efficacy of DNAzymes in gene therapy are also discussed: delivery systems to enhance the cellular uptake, modifications to enhance the stability and smart systems to generate sufficient cofactors in situ. Finally, some future trends and perspectives in these research areas are outlined.


DNAzymes gene-silencing delivery stability cofactors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Scientific Program of China (2011CB911000), the National Basic Research Program of China (2013CB932702), the National Natural Science Foundation of China (21325520, 21327009, J1210040, 21177036), the National Instrumentation Program (2011YQ030124), and the Foundation for Innovative Research Groups of NSFC (21521063).


  1. 1.
    Liu J, Cao Z, Lu Y. Chem Rev, 2009, 109: 1948–1998CrossRefGoogle Scholar
  2. 2.
    Breaker RR, Joyce GF. Chem Biol, 1994, 1: 223–229CrossRefGoogle Scholar
  3. 3.
    Silverman SK. Acc Chem Res, 2009, 42: 1521–1531CrossRefGoogle Scholar
  4. 4.
    Endo M, Takeuchi Y, Suzuki Y, Emura T, Hidaka K, Wang F, Willner I, Sugiyama H. Angew Chem, 2015, 127: 10696–10700CrossRefGoogle Scholar
  5. 5.
    Hwang K, Wu P, Kim T, Lei L, Tian S, Wang Y, Lu Y. Angew Chem Int Ed, 2014, 53: 13798–13802CrossRefGoogle Scholar
  6. 6.
    Liu J, Lu Y. J Am Chem Soc, 2003, 125: 6642–6643CrossRefGoogle Scholar
  7. 7.
    Yin BC, Ye BC, Tan W, Wang H, Xie CC. J Am Chem Soc, 2009, 131: 14624–14625CrossRefGoogle Scholar
  8. 8.
    Wu P, Hwang K, Lan T, Lu Y. J Am Chem Soc, 2013, 135: 5254–5257CrossRefGoogle Scholar
  9. 9.
    Elbaz J, Shlyahovsky B, Willner I. Chem Commun, 2008, 1569–1571Google Scholar
  10. 10.
    Yang C, Lates V, Prieto-Simón B, Marty JL, Yang X. Biosens Bioelectron, 2012, 32: 208–212CrossRefGoogle Scholar
  11. 11.
    Zhang XB, Wang Z, Xing H, Xiang Y, Lu Y. Anal Chem, 2010, 82: 5005–5011CrossRefGoogle Scholar
  12. 12.
    Lu LM, Zhang XB, Kong RM, Yang B, Tan W. J Am Chem Soc, 2011, 133: 11686–11691CrossRefGoogle Scholar
  13. 13.
    Dass CR, Choong PF, Khachigian LM. Mol Cancer Ther, 2008, 7: 243–251CrossRefGoogle Scholar
  14. 14.
    Xu ZJ, Yang LF, Sun LQ, Cao Y. Chin Sci Bull, 2012, 57: 3404–3408CrossRefGoogle Scholar
  15. 15.
    Santoro SW, Joyce GF. Proc Natl Acad Sci USA, 1997, 94: 4262–4266CrossRefGoogle Scholar
  16. 16.
    Dass CR, Choong PFM. Oligonucleotides, 2010, 20: 51–60CrossRefGoogle Scholar
  17. 17.
    Akhtar S, Hughes MD, Khan A, Bibby M, Hussain M, Nawaz Q, Double J, Sayyed P. Adv Drug Deliver Rev, 2000, 44: 3–21CrossRefGoogle Scholar
  18. 18.
    Ruble BK, Richards JL, Cheung-Lau JC, Dmochowski IJ. Inorg Chim Acta, 2012, 380: 386–391CrossRefGoogle Scholar
  19. 19.
    Cieslak M, Szymanski J, Adamiak RW, Cierniewski CS. J Biol Chem, 2003, 278: 47987–47996CrossRefGoogle Scholar
  20. 20.
    Ellington AD, Szostak JW. Nature, 1990, 346: 818–822CrossRefGoogle Scholar
  21. 21.
    Beaudry AA, Joyce GF. Science, 1992, 257: 635–641CrossRefGoogle Scholar
  22. 22.
    Cairns MJ. Nucleic Acids Res, 2003, 31: 2883–2889CrossRefGoogle Scholar
  23. 23.
    Zaborowska Z, Fürste JP, Erdmann VA, Kurreck J. J Biol Chem, 2002, 277: 40617–40622CrossRefGoogle Scholar
  24. 24.
    Chan CWS, Khachigian LM. Internal Med J, 2009, 39: 249–251CrossRefGoogle Scholar
  25. 25.
    Drake JW, Holland JJ. Proc Natl Acad Sci USA, 1999, 96: 13910–13913CrossRefGoogle Scholar
  26. 26.
    Tian T, Wang J, Zhou X. Org Biomol Chem, 2015, 13: 2226–2238CrossRefGoogle Scholar
  27. 27.
    Deng H, Shen W, Ren Y, Gao Z. Biosens Bioelectron, 2014, 54: 650–655CrossRefGoogle Scholar
  28. 28.
    Lan T, Furuya K, Lu Y. Chem Commun, 2010, 46: 3896–3898CrossRefGoogle Scholar
  29. 29.
    Cheng Y, Huang Y, Lei J, Zhang L, Ju H. Anal Chem, 2014, 86: 5158–5163CrossRefGoogle Scholar
  30. 30.
    Saran R, Liu J. Anal Chem, 2016, 88: 4014–4020CrossRefGoogle Scholar
  31. 31.
    Zhou W, Saran R, Chen Q, Ding J, Liu J. ChemBioChem, 2016, 17: 159–163CrossRefGoogle Scholar
  32. 32.
    Torabi SF, Wu P, McGhee CE, Chen L, Hwang K, Zheng N, Cheng J, Lu Y. Proc Natl Acad Sci USA, 2015, 112: 5903–5908CrossRefGoogle Scholar
  33. 33.
    Liu J, Lu Y. J Am Chem Soc, 2007, 129: 9838–9839CrossRefGoogle Scholar
  34. 34.
    Lee JH, Wang Z, Liu J, Lu Y. J Am Chem Soc, 2008, 130: 14217–14226CrossRefGoogle Scholar
  35. 35.
    Huang PJJ, Vazin M, Liu J. Anal Chem, 2014, 86: 9993–9999CrossRefGoogle Scholar
  36. 36.
    Chen F, Wang R, Li Z, Liu B, Wang X, Sun Y, Hao D, Zhang J. Nucleic Acids Res, 2004, 32: 2336–2341CrossRefGoogle Scholar
  37. 37.
    Wang F, Saran R, Liu J. Bioorganic Medicinal Chem Lett, 2015, 25: 1460–1463CrossRefGoogle Scholar
  38. 38.
    Lermer L, Roupioz Y, Ting R, Perrin DM. J Am Chem Soc, 2002, 124: 9960–9961CrossRefGoogle Scholar
  39. 39.
    Chan C, Khachigian L. Curr Med Chem, 2013, 20: 3448–3455CrossRefGoogle Scholar
  40. 40.
    Kusunoki A, Miyano-Kurosaki N, Takaku H. Biochem Biophysical Res Commun, 2003, 301: 535–539CrossRefGoogle Scholar
  41. 41.
    Barua S, Ramos J, Potta T, Taylor D, Huang HC, Montanez G, Rege K. Comb Chem High Throughput Screen, 2011, 14: 908–924CrossRefGoogle Scholar
  42. 42.
    Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrère F, Blanche S, Audit M, Payen E, Leboulch P, l’Homme B, Bougnères P, Von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P. Science, 2009, 326: 818–823CrossRefGoogle Scholar
  43. 43.
    Varkouhi AK, Scholte M, Storm G, Haisma HJ. J Control Release, 2011, 151: 220–228CrossRefGoogle Scholar
  44. 44.
    Huang HW, Chen FY, Lee MT. Phys Rev Lett, 2004, 92: 198304CrossRefGoogle Scholar
  45. 45.
    Jenssen H, Hamill P, Hancock REW. Clinical Microbiol Rev, 2006, 19: 491–511CrossRefGoogle Scholar
  46. 46.
    Zelphati O, Szoka Jr FC. Pharm Res, 1996, 13: 1367–1372CrossRefGoogle Scholar
  47. 47.
    Farhood H, Bottega R, Epand RM, Huang L. Biochim Biophys Acta-Biomembranes, 1992, 1111: 239–246CrossRefGoogle Scholar
  48. 48.
    Roh H, Pippin J, Drebin JA. Cancer Res, 2000, 60: 560–565Google Scholar
  49. 49.
    Abe T, Suzuki S, Hatta T, Takai K, Yokota T, Takaku H. Antivir Chem Chemoth, 1998, 9: 253–262CrossRefGoogle Scholar
  50. 50.
    Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC. Methods, 2004, 33: 95–103CrossRefGoogle Scholar
  51. 51.
    Li Y, Bhindi R, Deng ZJ, Morton SW, Hammond PT, Khachigian LM. Int J Cardiol, 2013, 168: 3659–3664CrossRefGoogle Scholar
  52. 52.
    Ke X, Yang Y, Hong S. Med Oncol, 2011, 28: 326–332CrossRefGoogle Scholar
  53. 53.
    Schwarze SR, Dowdy SF. Trends Pharmacol Sci, 2000, 21: 45–48CrossRefGoogle Scholar
  54. 54.
    Torchilin VP, Rammohan R, Weissig V, Levchenko TS. Proc Natl Acad Sci USA, 2001, 98: 8786–8791CrossRefGoogle Scholar
  55. 55.
    Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D’ Souza GGM. Proc Natl Acad Sci USA, 2003, 100: 1972–1977CrossRefGoogle Scholar
  56. 56.
    Turner JJ, Jones S, Fabani MM, Ivanova G, Arzumanov AA, Gait MJ. Blood Cells Mol Dis, 2007, 38: 1–7CrossRefGoogle Scholar
  57. 57.
    Delong R, Stephenson K, Loftus T, Fisher M, Alahari S, Nolting A, Juliano RL. J Pharm Sci, 1997, 86: 762–764CrossRefGoogle Scholar
  58. 58.
    Haensler J, Szoka FC. Bioconj Chem, 1993, 4: 372–379CrossRefGoogle Scholar
  59. 59.
    Bielinska A. Nucleic Acids Res, 1996, 24: 2176–2182CrossRefGoogle Scholar
  60. 60.
    Tack F, Bakker A, Maes S, Dekeyser N, Bruining M, Elissen-Roman C, Janicot M, Brewster M, Janssen HM, De Waal BFM, Fransen PM, Lou X, Meijer EW. J Drug Target, 2006, 14: 69–86CrossRefGoogle Scholar
  61. 61.
    Xing Z, Gao S, Duan Y, Han H, Li L, Yang Y, Li Q. Int J Nanomed, 2015, 10: 5715–5727Google Scholar
  62. 62.
    Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB. Chem Soc Rev, 2016, 45: 2583–2602CrossRefGoogle Scholar
  63. 63.
    Liang H, Zhang XB, Lv Y, Gong L, Wang R, Zhu X, Yang R, Tan W. Acc Chem Res, 2014, 47: 1891–1901CrossRefGoogle Scholar
  64. 64.
    Siepmann J, Peppas NA. Adv Drug Deliver Rev, 2012, 64: 163–174CrossRefGoogle Scholar
  65. 65.
    Schmidts T, Marquardt K, Schlupp P, Dobler D, Heinz F, Mäder U, Garn H, Renz H, Zeitvogel J, Werfel T, Runkel F. Int J Pharm, 2012, 431: 61–69CrossRefGoogle Scholar
  66. 66.
    Allen TM, Cullis PR. Science, 2004, 303: 1818–1822CrossRefGoogle Scholar
  67. 67.
    Mazumdar D, Liu J, Lu G, Zhou J, Lu Y. Chem Commun, 2010, 46: 1416–1418CrossRefGoogle Scholar
  68. 68.
    Zhou Z, Peng L, Wang X, Xiang Y, Tong A. Analyst, 2014, 139: 1178–1183CrossRefGoogle Scholar
  69. 69.
    Li D, Shlyahovsky B, Elbaz J, Willner I. J Am Chem Soc, 2007, 129: 5804–5805CrossRefGoogle Scholar
  70. 70.
    Yehl K, Joshi JP, Greene BL, Dyer RB, Nahta R, Salaita K. ACS Nano, 2012, 6: 9150–9157CrossRefGoogle Scholar
  71. 71.
    Somasuntharam I, Yehl K, Carroll SL, Maxwell JT, Martinez MD, Che PL, Brown ME, Salaita K, Davis ME. Biomaterials, 2016, 83: 12–22CrossRefGoogle Scholar
  72. 72.
    Ryoo SR, Jang H, Kim KS, Lee B, Kim KB, Kim YK, Yeo WS, Lee Y, Kim DE, Min DH. Biomaterials, 2012, 33: 2754–2761CrossRefGoogle Scholar
  73. 73.
    Chen Y, Yang L, Huang S, Li Z, Zhang L, He J, Xu Z, Liu L, Cao Y, Sun L. Int J Nanomed, 2013, 8: 3107–3118Google Scholar
  74. 74.
    Li J, Wang N, Luo Q, Wan L. Oligonucleotides, 2010, 20: 61–68CrossRefGoogle Scholar
  75. 75.
    Lin Tan M, Choong PF, Dass CR. Expert Opin on Drug Deliver, 2009, 6: 127–138CrossRefGoogle Scholar
  76. 76.
    Kurreck J. Eur J Biochem, 2003, 270: 1628–1644CrossRefGoogle Scholar
  77. 77.
    Schubert S. Nucleic Acids Res, 2003, 31: 5982–5992CrossRefGoogle Scholar
  78. 78.
    Santiago FS, Lowe HC, Kavurma MM, Chesterman CN, Baker A, Atkins DG, Khachigian LM. Nat Med, 1999, 5: 1264–1269CrossRefGoogle Scholar
  79. 79.
    Sun LQ, Cairns MJ, Gerlach WL, Witherington C, Wang L, King A. J Biol Chem, 1999, 274: 17236–17241CrossRefGoogle Scholar
  80. 80.
    Sioud M, Leirdal M. J Mol Biol, 2000, 296: 937–947CrossRefGoogle Scholar
  81. 81.
    Yen L, Strittmatter SM, Kalb RG. Ann Neurol, 1999, 46: 366–373CrossRefGoogle Scholar
  82. 82.
    Dass CR, Saravolac EG, Li Y, Sun LQ. Antisense Nucleic Acid Drug Dev, 2002, 12: 289–299CrossRefGoogle Scholar
  83. 83.
    Iversen PO. Blood, 2002, 99: 4147–4153CrossRefGoogle Scholar
  84. 84.
    Warashina M, Kuwabara T, Nakamatsu Y, Taira K. Chem Biol, 1999, 6: 237–250CrossRefGoogle Scholar
  85. 85.
    Wu Y, Yu L, Mc Mahon R, Rossi JJ, Forman SJ, Snyder DS. Hum Gene Ther, 1999, 10: 2847–2857CrossRefGoogle Scholar
  86. 86.
    Zhang L, Gasper WJ, Stass SA, Ioffe OB, Davis MA, Mixson AJ. Cancer Res, 2002, 62: 5463–5469Google Scholar
  87. 87.
    Robaldo L, Montserrat JM, Iribarren AM. Bioorg Med Chem Lett, 2010, 20: 4367–4370CrossRefGoogle Scholar
  88. 88.
    Veedu RN, Wengel J. Chem Biodivers, 2010, 7: 536–542CrossRefGoogle Scholar
  89. 89.
    Kaur H, Scaria V, Maiti S. Biochemistry, 2010, 49: 9449–9456CrossRefGoogle Scholar
  90. 90.
    Petersen M, Wengel J. Trends Biotechnol, 2003, 21: 74–81CrossRefGoogle Scholar
  91. 91.
    Vester B, Lundberg LB, Sørensen MD, Babu BR, Douthwaite S, Wengel J. J Am Chem Soc, 2002, 124: 13682–13683CrossRefGoogle Scholar
  92. 92.
    Doessing H, Vester B. Molecules, 2011, 16: 4511–4526CrossRefGoogle Scholar
  93. 93.
    Vester B, Wengel J. Biochemistry, 2004, 43: 13233–13241CrossRefGoogle Scholar
  94. 94.
    Jadhav VM, Scaria V, Maiti S. Angew Chem Int Ed, 2009, 48: 2557–2560CrossRefGoogle Scholar
  95. 95.
    Suryawanshi H, Lalwani MK, Ramasamy S, Rana R, Scaria V, Sivasubbu S, Maiti S. ChemBioChem, 2012, 13: 584–589CrossRefGoogle Scholar
  96. 96.
    Adams SR, Tsien RY. Annu Rev Physiol, 1993, 55: 755–784CrossRefGoogle Scholar
  97. 97.
    Young DD, Deiters A. Org Biomol Chem, 2007, 5: 999–1005CrossRefGoogle Scholar
  98. 98.
    Young DD, Lively MO, Deiters A. J Am Chem Soc, 2010, 132: 6183–6193CrossRefGoogle Scholar
  99. 99.
    Unwalla H, Banerjea AC. Biochem J, 2001, 357: 147–155CrossRefGoogle Scholar
  100. 100.
    Abdelgany A, Wood M, Beeson D. J Gene Med, 2007, 9: 727–738CrossRefGoogle Scholar
  101. 101.
    Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W. Angew Chem, 2015, 127: 4883–4887CrossRefGoogle Scholar
  102. 102.
    Yuan BF, Xue Y, Luo M, Hao YH, Tan Z. Int J Biochem Cell Biol, 2007, 39: 1119–1129CrossRefGoogle Scholar
  103. 103.
    Deng R, Xie X, Vendrell M, Chang YT, Liu X. J Am Chem Soc, 2011, 133: 20168–20171CrossRefGoogle Scholar
  104. 104.
    Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R, Zhang X, Tan W. J Am Chem Soc, 2014, 136: 11220–11223CrossRefGoogle Scholar
  105. 105.
    Zhang XL, Zheng C, Guo SS, Li J, Yang HH, Chen G. Anal Chem, 2014, 86: 3426–3434CrossRefGoogle Scholar
  106. 106.
    He ZM, Zhang PH, Li X, Zhang JR, Zhu JJ. Sci Rep, 2016, 6: 22737CrossRefGoogle Scholar
  107. 107.
    Muhammad F, Guo M, Qi W, Sun F, Wang A, Guo Y, Zhu G. J Am Chem Soc, 2011, 133: 8778–8781CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Molecular Science and Biomedicine Laboratory; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; Collaborative Innovation Center for Chemistry and Molecular Medicine; College of Chemistry and Chemical Engineering, College of BiologyHunan UniversityChangshaChina
  2. 2.Department of Chemistry, Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations