Advertisement

Science China Chemistry

, Volume 59, Issue 11, pp 1448–1466 | Cite as

Advances in theoretical study on transition-metal-catalyzed C−H activation

  • Yuan-Ye JiangEmail author
  • Xiaoping Man
  • Siwei BiEmail author
Reviews

Abstract

Transition-metal-catalyzed C–H activation represents one of most attractive research fields in modern organic chemistry while theoretical studies have become a popular and effective tool for elucidating mechanism nowadays. The recent achievements in the cross field of the two orientations are reviewed in this article. The first part introduced the advances in theoretical study on transition-metal-catalyzed C–H activation. The elegant work reported mainly in and after 2013, classified according to the mechanisms of C–H activation, were covered. The second part provided an analysis on the distribution of quantum-chemical methods, solvation models and basis sets in the collected theoretical studies.

Keywords

transition metal C–H activation mechanism DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1 a).
    Balcells D, Clot E, Eisenstein O, Nova A, Perrin L. Acc Chem Res, 2016, 49: 1070–1078CrossRefGoogle Scholar
  2. b).
    Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem Soc Rev, 2016, 45: 2900–2936CrossRefGoogle Scholar
  3. c).
    Shi ZJ. Sci China Chem, 2015, 58, 1245–1248CrossRefGoogle Scholar
  4. d).
    Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew Chem Int Ed, 2012, 51: 10236–10254CrossRefGoogle Scholar
  5. e).
    Engle KM, Mei TS, Wasa M, Yu J. Acc Chem Res, 2012, 45: 788–802CrossRefGoogle Scholar
  6. 2 a).
    Cook AK, Schimler SD, Matzger AJ, Sanford MS. Science, 2016, 351: 1421–1424CrossRefGoogle Scholar
  7. b).
    Zhang FL, Hong K, Li TJ, Park H, Yu JQ. Science, 2016, 351: 252–256CrossRefGoogle Scholar
  8. c).
    Wei H, Lu H, Fang T, Bo Z. Sci China Chem, 2015, 58: 286–293CrossRefGoogle Scholar
  9. d).
    Pan C, Han J, Zhu C. Sci China Chem, 2014, 57, 1172–1175CrossRefGoogle Scholar
  10. e).
    Sharma A, Hartwig JF. Nature, 2015, 517: 600–604CrossRefGoogle Scholar
  11. f).
    Liu YJ, Xu H, Kong WJ, Shang M, Dai HX, Yu JQ. Nature, 2014, 515: 389–393CrossRefGoogle Scholar
  12. g).
    Wang B, He G, Chen G. Sci China Chem, 2015, 58: 1345–1348CrossRefGoogle Scholar
  13. h).
    Shi Y, Wang Z, Cheng Y, Lan J, She Z, You J. Sci China Chem, 2015, 58: 1292–1296CrossRefGoogle Scholar
  14. i).
    Cheng C, Hartwig JF. Science, 2014, 343: 853–857CrossRefGoogle Scholar
  15. 3 a).
    Ackermann L. Chem Rev, 2011, 111: 1315–1345CrossRefGoogle Scholar
  16. b).
    Caballero A. Pérez PJ. Chem Soc Rev, 2013, 42: 8809–8820CrossRefGoogle Scholar
  17. c).
    Musaev DG, Figg TM, Kaledin, AL. Chem Soc Rev, 2014, 43: 5009–5031CrossRefGoogle Scholar
  18. d).
    Huang Z, Lim HN, Mo FY, Young MC, Dong G. Chem Soc Rev, 2015, 44: 7764–7786CrossRefGoogle Scholar
  19. e).
    Vanjari R, Singh KN. Chem Soc Rev, 2015, 44: 8062–8096CrossRefGoogle Scholar
  20. f).
    Huang H, Ji X, Wu W, Jiang H. Chem Soc Rev, 2015, 44: 1155–1171CrossRefGoogle Scholar
  21. g).
    Lu X, Xiao B, Shang R, Liu L. Chin Chem Lett, 2016, 27: 305–311CrossRefGoogle Scholar
  22. h).
    Zhang F, Spring DR. Chem Soc Rev, 2014, 43: 6906–6919CrossRefGoogle Scholar
  23. 4 a).
    Arockiam PB, Bruneau C, Dixneuf PH. Chem Rev, 2012, 112: 5879–5918CrossRefGoogle Scholar
  24. b).
    Manikandan R, Jeganmohan M. Org Biomol Chem, 2015, 13: 10420–10436CrossRefGoogle Scholar
  25. c).
    Song G, Wang F, Li X. Chem Soc Rev, 2012, 41: 3651–3678CrossRefGoogle Scholar
  26. d).
    Lombard FJ, Coster MJ. Org Biomol Chem, 2015, 13: 6419–6431CrossRefGoogle Scholar
  27. e).
    Xie J, Pan C, Abdukader A, Zhu C. Chem Soc Rev, 2014, 43: 5245–5256CrossRefGoogle Scholar
  28. f).
    Wang JB. Sci China Chem, 2014, 57: 1057CrossRefGoogle Scholar
  29. g).
    Thapa S, Shrestha B, Gurung SK, Giri R. Org Biomol Chem, 2015, 13: 4816–4827CrossRefGoogle Scholar
  30. h).
    Gunay A, Theopold, KH. Chem Rev, 2010, 110: 1060–1081CrossRefGoogle Scholar
  31. i).
    Colby, DA. Bergman RG, Ellman JA. Chem Rev 2010, 110: 624–655CrossRefGoogle Scholar
  32. k).
    Qi X, Chen P, Liu G. Sci China Chem, 2015, 58: 1249–1251CrossRefGoogle Scholar
  33. l).
    Rao Y, Shan G, Yang X. Sci China Chem, 2014, 57: 930–944CrossRefGoogle Scholar
  34. n).
    Lyons TW, Sanford MS. Chem Rev, 2010, 110: 1147–1169CrossRefGoogle Scholar
  35. 5 a).
    Li BJ, Shi ZJ. Chem Soc Rev, 2012, 41: 5588–5598CrossRefGoogle Scholar
  36. b).
    Li B, Dixneuf PH. Chem Soc Rev, 2013, 42: 5744–5767CrossRefGoogle Scholar
  37. c).
    Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem Rev 2010, 110: 890–931CrossRefGoogle Scholar
  38. d).
    Yang J. Org Biomol Chem, 2015, 13: 1930–1941CrossRefGoogle Scholar
  39. e).
    Yang Y, Wang C. Sci China Chem, 2015, 58: 1266–1279CrossRefGoogle Scholar
  40. f).
    Wang K, Hu F, Zhang Y, Wang J. Sci China Chem, 2015, 58: 1252–1265CrossRefGoogle Scholar
  41. g).
    Cho SH, Kim JY, Kwak J, Chang S. Chem Soc Rev, 2011, 40: 5068–5083CrossRefGoogle Scholar
  42. 6 a).
    Louillat ML, Patureau FW. Chem Soc Rev, 2014, 43: 901–910CrossRefGoogle Scholar
  43. b).
    Ros A, Fernández R, Lassaletta JM. Chem Soc Rev, 2014, 43: 3229–3243CrossRefGoogle Scholar
  44. c).
    Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem Rev, 2015, 115: 12138–12204CrossRefGoogle Scholar
  45. d).
    Liu C, Zhang H, Shi W, Lei A. Chem Rev, 2011, 111: 1780–1824CrossRefGoogle Scholar
  46. 7 a).
    Cho KB, Hirao H, Shaik S, Nam W. Chem Soc Rev, 2016, 45: 1197–1210CrossRefGoogle Scholar
  47. b).
    Park Y, Ahn S, Kang D, Baik MH. Acc Chem Res, 2016, 49: 1263–1270CrossRefGoogle Scholar
  48. c).
    Gagnon N, Tolman WB. Acc Chem Res, 2015, 48: 2126–2131CrossRefGoogle Scholar
  49. d).
    McCann SD, Stahl SS. Acc Chem Res, 2015, 48: 1756–1766CrossRefGoogle Scholar
  50. e).
    Nam W, Lee YM, Fukuzumi S. Acc Chem Res, 2014, 47: 1146–1154CrossRefGoogle Scholar
  51. 8 a).
    Simmons EM, Hartwig JF. Angew Chem Int Ed, 2012, 51: 2–9CrossRefGoogle Scholar
  52. b.
    Copéret C. Chem Rev, 2010, 110: 656–680CrossRefGoogle Scholar
  53. c).
    Zhao S, Chen FJ, Liu B, Shi BF. Sci China Chem, 2015, 58: 1302–1309CrossRefGoogle Scholar
  54. d).
    Xiao B, Fu Y, Xu J, Gong TJ, Dai JJ, Yi J, Liu L. J Am Chem Soc, 2010, 132: 468–469CrossRefGoogle Scholar
  55. e).
    Yu YB, Wang Z, Zhang XG. Sci China Chem, 2014, 57: 276–281CrossRefGoogle Scholar
  56. f).
    Li Y, Li BJ, Wang WH, Huang WP, Zhang XS, Chen K, Shi ZJ. Angew Chem Int Ed, 2011, 50: 2115–2119CrossRefGoogle Scholar
  57. g).
    Zheng J, Wang SB, Zheng C, You SL. J Am Chem Soc, 2015, 137: 4880–4883CrossRefGoogle Scholar
  58. h).
    Li W, Duan Z, Zhang X, Zhang H, Wang M, Jiang R, Zeng H, Liu C, Lei A. Angew Chem Int Ed, 2015, 54: 1893–1896CrossRefGoogle Scholar
  59. i).
    Li Q, Yu ZX. J Am Chem Soc, 2010, 132: 4542–4543CrossRefGoogle Scholar
  60. j).
    Hu Z, Luo S, Zhu Q. Sci China Chem, 2015, 58: 1349–1353CrossRefGoogle Scholar
  61. k).
    Xu J, Fu Y, Luo DF, Jiang YY, Xiao B, Liu ZJ, Gong TJ, Liu L. J Am Chem Soc, 2011, 133: 15300–15303CrossRefGoogle Scholar
  62. l).
    Shi XY, Dong XF, Fan J, Liu KY, Wei JF, Li CJ. Sci China Chem, 2015, 58: 1286–1291CrossRefGoogle Scholar
  63. m).
    Sun J, Wang F, Shen Y, Zhi H, Wu H, Liu Y. Org Biomol Chem, 2015, 13: 10236–10243CrossRefGoogle Scholar
  64. 9 a).
    Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J Am Chem Soc, 2005, 127: 14263–14278CrossRefGoogle Scholar
  65. b).
    Plata RE, Singleton DA. J Am Chem Soc, 2015, 137: 3811–3826CrossRefGoogle Scholar
  66. 10 a).
    Balcells D, Clot E, Eisenstein O. Chem Rev, 2010, 110: 749–823CrossRefGoogle Scholar
  67. b).
    Bonney KJ, Schoenebeck F. Chem Soc Rev, 2014, 43: 6609–6638CrossRefGoogle Scholar
  68. c).
    Houk KN. Chem Soc Rev, 2014, 43: 4905CrossRefGoogle Scholar
  69. d).
    Sperger T, Sanhueza IA, Kalvet I, Schoenebeck F. Chem Rev, 2015, 115: 9532–9586CrossRefGoogle Scholar
  70. e).
    Cheng GJ, Zhang X, Chung LW, Xu L, Wu YD. J Am Chem Soc, 2015, 137: 1706–1725CrossRefGoogle Scholar
  71. f).
    Zhang X, Chung LW, Wu YD. Acc Chem Res, 2016, 49: 1302–1310CrossRefGoogle Scholar
  72. 11.
    Gorelsky SI, Lapointe D, Fagnou K. J Am Chem Soc, 2008, 130: 10848–10849CrossRefGoogle Scholar
  73. 12.
    Boutadla Y, Davies DL, Macgregor SA, Poblador-Bahamonde AI. Dalton Trans, 2009: 5820–5831Google Scholar
  74. 13 a).
    Holstein PM, Vogler M, Larini P, Pilet G, Clot E, Baudoin O. ACS Catal, 2015, 5: 4300–4308CrossRefGoogle Scholar
  75. b).
    Xiao B, Gong TJ, Liu ZJ, Liu JH, Luo DF, Xu J, Liu L. J Am Chem Soc, 2011, 133: 9250–9253CrossRefGoogle Scholar
  76. c).
    Yang YM, Dang ZM, Yu HZ. Org Biomol Chem, 2016, 14: 4499–4506CrossRefGoogle Scholar
  77. d).
    Sanhueza IA, Wagner AM, Sanford MS, Schoenebeck F. Chem Sci, 2013, 4: 2767–2775CrossRefGoogle Scholar
  78. e).
    Zhang Q, Yu H, Fu Y. Sci China Chem, 2015, 58: 1316–1322CrossRefGoogle Scholar
  79. f).
    Smalley AP, Gaunt MJ. J Am Chem Soc, 2015, 137: 10632–10641Google Scholar
  80. g).
    Zhang S, Shi L, Ding Y. J Am Chem Soc, 2011, 133: 20218–20229CrossRefGoogle Scholar
  81. h).
    Dang Y, Deng X, Guo J, Song C, Hu W, Wang ZX. J Am Chem Soc, 2016, 138: 2712–2723CrossRefGoogle Scholar
  82. i).
    Zhang L, Fang DC. Org Biomol Chem, 2015, 13: 7950–7960CrossRefGoogle Scholar
  83. j).
    Xiao B, Gong TJ, Xu J, Liu ZJ, Liu L. J Am Chem Soc, 2011, 133: 1466–1474CrossRefGoogle Scholar
  84. k).
    Cheng GJ, Chen P, Sun TY, Zhang X, Yu JQ, Wu YD. Chem Eur J, 2015, 21: 11180–11188CrossRefGoogle Scholar
  85. 14.
    Cotton FA, Koshevoy IO, Lahuerta P, Murillo CA. Sanaú M, Ubeda MA, Zhao Q. J Am Chem Soc, 2006, 128: 13674–13675CrossRefGoogle Scholar
  86. 15.
    Giri R, Lan Y, Liu P, Houk KN, Yu JQ. J Am Chem Soc, 2012, 134: 14118–14126CrossRefGoogle Scholar
  87. 16.
    Yang YF, Cheng GJ, Liu P, Leow D, Sun TY, Chen P, Zhang X, Yu JQ, Wu YD, Houk KN. J Am Chem Soc, 2014, 136: 344–355CrossRefGoogle Scholar
  88. 17.
    Anand M, Sunoj RB, Schaefer HF. ACS Catal, 2016, 6: 696–708CrossRefGoogle Scholar
  89. 18.
    Ruan GY, Qi ZH, Zhang Y, Liu W, Wang Y. RSC Adv, 2016, 6: 35855–35858CrossRefGoogle Scholar
  90. 19 a).
    Du L, Xu Y, Yang S, Li J, Fu X. J Org Chem, 2016, 81: 1921–1929CrossRefGoogle Scholar
  91. b).
    Liu T, Zheng XW, Han LL, Li YP, Han SM, Yu ZY. RSC Adv, 2016, 6: 23265–23271CrossRefGoogle Scholar
  92. c).
    Quiñones N, Seoane A, García-Fandiño R, Mascareñas JL, Gulías M. Chem Sci, 2013, 4: 2874–2879CrossRefGoogle Scholar
  93. d).
    Algarra AG, Cross WB, Davies DL, Khamker Q, Macgregor SA. McMullin CL, Singh K. J Org Chem, 2014, 79: 1954–1970CrossRefGoogle Scholar
  94. e).
    Liu L, Wu Y, Wang T, Gao X, Zhu J, Zhao Y. J Org Chem, 2014, 79: 5074–5081CrossRefGoogle Scholar
  95. f).
    Fu R, Nielsen RJ, Goddard WA, Fortman GC, Gunnoe TB. ACS Catal, 2014, 4: 4455–4465CrossRefGoogle Scholar
  96. g).
    Li J, Qiu Z. J Org Chem, 2015, 80: 10686–10693CrossRefGoogle Scholar
  97. 20 a).
    Herbert MB, Suslick BA, Liu P, Zou L, Dornan PK, Houk KN, Grubbs RH. Organometallics, 2015, 34: 2858–2869CrossRefGoogle Scholar
  98. b).
    Wu J, Xu W, Yu ZX, Wang J. J Am Chem Soc, 2015, 137: 9489–9496CrossRefGoogle Scholar
  99. c).
    Shan C, Luo X, Qi X, Liu S, Li Y, Lan Y. Organometallics, 2016, 35: 1440–1445CrossRefGoogle Scholar
  100. d).
    Liu D, Yu H, Fu Y. Acta Chim Sinica, 2013, 71: 1385–1395CrossRefGoogle Scholar
  101. 21 a).
    Cross WB, Razak S, Singh K, Warner AJ. Chem Eur J, 2014, 20: 13203–13209CrossRefGoogle Scholar
  102. b).
    Pahls DR, Allen KE, Goldberg KI, Cundari TR. Organometallics, 2014, 33: 6413–6419CrossRefGoogle Scholar
  103. 22 a).
    Tang SY, Gong TJ, Fu Y. Sci China Chem, 2013, 56: 619–632CrossRefGoogle Scholar
  104. b).
    Gray A, Tsybizova A, Roithov J. Chem Sci, 2015, 6: 5544–5553CrossRefGoogle Scholar
  105. c).
    Ruan GY, Zhang Y, Qi ZH, Ai DX, Liu W, Wang Y. Comput Theor Chem, 2015, 1054: 16–21CrossRefGoogle Scholar
  106. 23.
    Qi X, Zhang H, Shao A, Zhu L, Xu T, Gao M, Liu C, Lan Y. ACS Catal, 2015, 5: 6640–6647CrossRefGoogle Scholar
  107. 24.
    Figg TM, Park S, Park J, Chang S, Musaev DG. Organometallics, 2014, 33: 4076–4085CrossRefGoogle Scholar
  108. 25 a).
    Hong X, Liang Y, Houk KN. J Am Chem Soc, 2014, 136: 2017–2025CrossRefGoogle Scholar
  109. b).
    Lu Q, Yu H, Fu Y. J Am Chem Soc, 2014, 136: 8252–8260CrossRefGoogle Scholar
  110. c).
    Xu ZY, Jiang YY, Yu HZ, Fu Y. Chem Asian J, 2015, 10: 2479–2483CrossRefGoogle Scholar
  111. 26.
    Xu L, Zhu Q, Huang G, Cheng B, Xia Y. J Org Chem, 2012, 77: 3017–3024CrossRefGoogle Scholar
  112. 27.
    Guo W, Xia Y. J Org Chem, 2015, 80: 8113–8121CrossRefGoogle Scholar
  113. 28.
    Chen WJ, Lin Z. Organometallics, 2015, 34: 309–318CrossRefGoogle Scholar
  114. 29.
    Yang YF, Houk KN, Wu YD. J Am Chem Soc, 2016, 138: 6861–6868CrossRefGoogle Scholar
  115. 30 a).
    Zhou T, Guo W, Xia Y. Chem Eur J, 2015, 21: 9209–9218CrossRefGoogle Scholar
  116. b).
    Guo W, Zhou T, Xia Y. Organometallics, 2015, 34: 3012–3020CrossRefGoogle Scholar
  117. c).
    Chen J, Guo W, Xia Y. J Org Chem, 2016, 81: 2635–2638CrossRefGoogle Scholar
  118. 31 a).
    Yu S, Liu S, Lan Y, Wan B, Li X. J Am Chem Soc, 2015, 137: 1623–1631CrossRefGoogle Scholar
  119. b).
    Wang Q, Li Y, Qi Z, Xie F, Lan Y, Li X. ACS Catal, 2016, 6: 1971–1980CrossRefGoogle Scholar
  120. c).
    Gao B, Liu S, Lan Y, Huang H. Organometallics, 2016, 35: 1480–1487CrossRefGoogle Scholar
  121. 32.
    Lu Q, Yu H, Fu Y. Chem Commun, 2013, 49: 10847–10849CrossRefGoogle Scholar
  122. 33 a).
    Jiang J, Yu JQ, Morokuma K. ACS Catal, 2015, 5: 3648–3661CrossRefGoogle Scholar
  123. b).
    Jiang J, Ramozzi R, Morokuma K. Chem Eur J, 2015, 21: 11158–11164CrossRefGoogle Scholar
  124. c).
    Ruiz S, Villuendas P, Ortuño MA, Lledûs A, Urriolabeitia EP. Chem Eur J, 2015, 21: 8626–8636CrossRefGoogle Scholar
  125. d).
    Ajitha MJ, Huang KW, Kwak J, Kim HJ, Chang S, Jung Y. Dalton Trans, 2016, 45: 7980–7985CrossRefGoogle Scholar
  126. 34.
    Cheng GJ, Yang YF, Liu P, Chen P, Sun TY, Li G, Zhang X, Houk KN, Yu JQ, Wu YD. J Am Chem Soc, 2014, 136: 894–897CrossRefGoogle Scholar
  127. 35.
    Haines BE, Musaev DG. ACS Catal, 2015, 5: 830–840CrossRefGoogle Scholar
  128. 36.
    Dang Y, Qu S, Nelson JW, Pham HD, Wang ZX, Wang X. J Am Chem Soc, 2015, 137: 2006–2014CrossRefGoogle Scholar
  129. 37.
    O’Reilly ME, Fu R, Nielsen RJ, Sabat M, Goddard WA, Gunnoe TB. J Am Chem Soc, 2014, 136: 14690–14693CrossRefGoogle Scholar
  130. 38.
    Wu W, Liu Y, Bi S. Org Biomol Chem, 2015, 13: 8251–8260CrossRefGoogle Scholar
  131. 39.
    Yang Y, Liu P. ACS Catal, 2015, 5: 2944–2951CrossRefGoogle Scholar
  132. 40.
    Duarte FJS, Poli G, Calhorda MJ. ACS Catal, 2016, 6: 1772–1784CrossRefGoogle Scholar
  133. 41 a).
    Thawani A, Rajeev R, Sunoj RB. Chem Eur J, 2013, 19: 4069–4077CrossRefGoogle Scholar
  134. b).
    Zhang M, Huang G. Dalton Trans, 2016, 45: 3552–3557CrossRefGoogle Scholar
  135. c).
    Huang G, Liu P. ACS Catal, 2016, 6: 809–820CrossRefGoogle Scholar
  136. 42.
    Lee SH, Gorelsky SI, Nikonov GI. Organometallics, 2013, 32: 6599–6604CrossRefGoogle Scholar
  137. 43 a).
    Luo X, Bai R, Liu S, Shan C, Chen C, Lan Y. J Org Chem, 2016, 81: 2320–2326CrossRefGoogle Scholar
  138. b).
    Kantchev EAB, Pangestu SR, Zhou F, Sullivan MB, Su HB. Chem Eur J, 2014, 20: 15625–15634CrossRefGoogle Scholar
  139. c).
    Liu YY, Geng ZY, Wang YC, Liu JL, Hou XF. Comput Theor Chem, 2013, 1015: 52–63CrossRefGoogle Scholar
  140. d).
    Wang M, Zhang X, Chen Z, Tang YH, Lei M. Sci China Chem, 2014, 57: 1264–1275CrossRefGoogle Scholar
  141. 44.
    Thenraj M, Samuelson AG. Organometallics, 2013, 32: 7141–7152CrossRefGoogle Scholar
  142. 45 a).
    Campos J, Ortega-Moreno L, Conejero S, Peloso R. López-Serrano J, Maya C, Carmona E. Chem Eur J, 2015, 21: 8883–8896CrossRefGoogle Scholar
  143. b).
    Miscione GP, Bottoni A. Organometallics, 2014, 33: 4173–4182CrossRefGoogle Scholar
  144. 46.
    Song C, Dang Y, Tao Y, Wang ZX. Organometallics, 2015, 34: 5233–5244CrossRefGoogle Scholar
  145. 47 a).
    Yu H, Fu Y. Chem Eur J, 2012, 18: 16765–16773CrossRefGoogle Scholar
  146. b).
    Jiang YY, Li Z, Shi J. Organometallics, 2012, 31: 4356–4366CrossRefGoogle Scholar
  147. c).
    Li Z, Liu L. Chin. Catal, 2015, 36: 3–14CrossRefGoogle Scholar
  148. 48 a).
    Yang Z, Yu H, Fu Y. Chem Eur J, 2013, 19: 12093–12103CrossRefGoogle Scholar
  149. b).
    Li J, Zhang D, Sun H, Li X. Org Biomol Chem, 2014, 12: 1897–1907CrossRefGoogle Scholar
  150. c).
    Meng Q, Wang F, Li M. J Mol Model, 2013, 19: 2225–2234CrossRefGoogle Scholar
  151. 49.
    Xu X, Jia J, Sun H, Liu Y, Xu W, Shi Y, Zhang D, Li X. Dalton Trans, 2013, 42: 3417–3428CrossRefGoogle Scholar
  152. 50.
    Pitts AL, Hall MB. Organometallics, 2015, 34: 3129–3140CrossRefGoogle Scholar
  153. 51.
    Bellows SM, Cundari TR, Jones WD. Organometallics, 2015, 34: 4032–4038CrossRefGoogle Scholar
  154. 52.
    Sun Y, Tang H, Chen K, Hu L, Yao J, Shaik S, Chen H. J Am Chem Soc, 2016, 138: 3715–3730CrossRefGoogle Scholar
  155. 53.
    Huang G. Org Lett, 2015, 17: 1994–1997CrossRefGoogle Scholar
  156. 54.
    Pasha FA, Bendjeriou-Sedjerari A, Huang KW, Basset JM. Organometallics, 2014, 33: 3320–3327CrossRefGoogle Scholar
  157. 55.
    McKay D, Riddlestone IM, Macgregor SA, Mahon MF, Whittlesey MK. ACS Catal, 2015, 5: 776–787CrossRefGoogle Scholar
  158. 56.
    Yang Y, Zhang Q, Shi J, Fu Y. Acta Chim Sinica, 2016, 74: 422–428CrossRefGoogle Scholar
  159. 57.
    Mathew J, Koga N, Suresh CH. Organometallics, 2008, 27: 4666–4670CrossRefGoogle Scholar
  160. 58 a).
    Boultadakis-Arapinis M, Gandon V, Prost E, Micouin L, Lecourt T. Adv Synth Catal, 2014, 356: 2493–2505CrossRefGoogle Scholar
  161. b).
    Liu Y, Zhang D, Zhou J, Liu C. J Phys Chem A, 2010, 114: 6164–6170CrossRefGoogle Scholar
  162. 59.
    Varela-Álvarez A, Musaev DG. Chem Sci, 2013, 4: 3758–3764CrossRefGoogle Scholar
  163. 60.
    Liu H, Duan JX, Qu D, Guo LP, Xie ZZ. Organometallics, 2016, 35: 2003–2009CrossRefGoogle Scholar
  164. 61 a).
    Batiste L, Chen P. J Am Chem Soc, 2014, 136: 9296–9307CrossRefGoogle Scholar
  165. b).
    Mamidipalli P, Yun SY, Wang KP, Zhou T, Xia Y, Lee D. Chem Sci, 2014, 5: 2362–2367CrossRefGoogle Scholar
  166. 62 a).
    Guo Z, Guan X, Huang JS, Tsui WM, Lin Z, Che CM. Chem Eur J, 2013, 19: 11320–11331CrossRefGoogle Scholar
  167. b).
    Manca G, Gallo E, Intrieri D, Mealli C. ACS Catal, 2014, 4: 823–832CrossRefGoogle Scholar
  168. 63 a).
    Song RJ, Liu Y, Xie YX, Li JH. Synthesis, 2015, 47: 1195–1209CrossRefGoogle Scholar
  169. b).
    Wendlandt AE, Suess AM, Stahl SS. Angew Chem Int Ed, 2011, 50: 11062–11087CrossRefGoogle Scholar
  170. c).
    Lei J, Huang J, Zhu Q. Org Biomol Chem, 2016, 14: 2593–2602CrossRefGoogle Scholar
  171. d).
    Zhang B, Studer A. Chem Soc Rev, 2015, 44: 3505–3521CrossRefGoogle Scholar
  172. 64.
    Guo XK, Zhang LB, Wei D, Niu JL. Chem Sci, 2015, 6: 7059–7071CrossRefGoogle Scholar
  173. 65.
    Suess AM, Ertem MZ, Cramer CJ, Stahl SS. J Am Chem Soc, 2013, 135: 9797–9804CrossRefGoogle Scholar
  174. 66 a).
    Jones GO, Liu P, Houk KN, Buchwald SL. J Am Chem Soc, 2010, 132: 6205–6213CrossRefGoogle Scholar
  175. b).
    Ullman AM, Nocera DG. J Am Chem Soc, 2013, 135: 15053–15061CrossRefGoogle Scholar
  176. c).
    Zhang Q, Zhang ZQ, Fu Y, Yu HZ. ACS Catal, 2016, 6: 798–808CrossRefGoogle Scholar
  177. 67.
    Wei J, Jiang J, Xiao X, Lin D, Deng Y, Ke Z, Jiang H, Zeng W. J Org Chem, 2016, 81: 946–955CrossRefGoogle Scholar
  178. 68.
    Guihaumé J, Halbert S, Eisenstein O, Perutz RN. Organometallics, 2012, 31: 1300–1314CrossRefGoogle Scholar
  179. 69.
    Xiao LJ, Fu XN, Zhou MJ, Xie JH, Wang LX, Xu XF, Zhou QL. J Am Chem Soc, 2016, 138: 2957–2960CrossRefGoogle Scholar
  180. 70.
    Nett AJ, Zhao W, Zimmerman PM, Montgomery J. J Am Chem Soc, 2015, 137: 7636–7639CrossRefGoogle Scholar
  181. 71.
    Fallon BJ, Derat E, Amatore M, Aubert C, Chemla F, Ferreira F, Perez-Luna A, Petit M. Org Lett, 2016, 18: 2292–2295CrossRefGoogle Scholar
  182. 72.
    Hamzaoui B, Pelletier JDA, Abou-Hamad E, Chen Y. El Eter M, Chermak E, Cavallo L, Basset JM. Chem Eur J, 2016, 22: 3000–3008CrossRefGoogle Scholar
  183. 73 a).
    Sun X, Sun X, Geng C, Zhao H, Li J. J Phys Chem A, 2014, 118: 7146–7158CrossRefGoogle Scholar
  184. b).
    Tang H, Guan J, Liu H, Huang X. Dalton Trans, 2013, 42: 10260–10270CrossRefGoogle Scholar
  185. c).
    Ji L, Franke A, Brindell M, Oszajca M, Zahl A, van Eldik R. Chem Eur J, 2014, 20: 14437–14450CrossRefGoogle Scholar
  186. d).
    Singh KK, Tiwari MK, Ghosh M, Panda C, Weitz A, Hendrich MP, Dhar BB, Vanka K. Sen Gupta S. Inorg Chem, 2015, 54: 1535–1542CrossRefGoogle Scholar
  187. e).
    Mai BK, Kim Y. Inorg Chem, 2016, 55: 3844–3852CrossRefGoogle Scholar
  188. 74.
    Liu W, Groves JT. Acc Chem Res, 2015, 48: 1727–1735CrossRefGoogle Scholar
  189. 75.
    Dhuri SN, Cho KB, Lee YM, Shin SY, Kim JH, Mandal D, Shaik S, Nam W. J Am Chem Soc, 2015, 137: 8623–8632CrossRefGoogle Scholar
  190. 76 a).
    Dietl N, Zhang X, van der Linde C, Beyer MK, Schlangen M, Schwarz H. Chem Eur J, 2013, 19: 3017–3028CrossRefGoogle Scholar
  191. b).
    Wang ZC, Yin S, Bernstein ER. J Phys Chem A, 2013, 117: 2294–2301CrossRefGoogle Scholar
  192. c).
    Chen XX, Xie B, Wang YC. Comput Theor Chem, 2015: 1054: 63–70CrossRefGoogle Scholar
  193. 77.
    Rezabal E, Ruipérez F, Ugalde JM. Phys Chem Chem Phys, 2013, 15: 1148–1153CrossRefGoogle Scholar
  194. 78.
    Rijs NJ, Weiske T, Schlangen M, Schwarz H. Chem Phys Lett, 2014, 608: 408–424CrossRefGoogle Scholar
  195. 79.
    Rijs NJ, González-Navarrete P, Schlangen M, Schwarz H. J Am Chem Soc, 2016, 138: 3125–3135CrossRefGoogle Scholar
  196. 80.
    Cho KB, Kang H, Woo J, Park YJ, Seo MS, Cho J, Nam W. Inorg Chem, 2014, 53: 645–652CrossRefGoogle Scholar
  197. 81.
    Sun X, Sun X, Geng C, Zhao H, Li J. J Phys Chem A, 2014, 118: 7146–7158CrossRefGoogle Scholar
  198. 82 a).
    Li ZF, Fan Y. De Yonker NJ, Zhang X, Su CY, Xu H, Xu X, Zhao C. J Org Chem, 2012, 77: 6076–6086CrossRefGoogle Scholar
  199. b).
    Jin L, Wu Y, Zhao X. Organometallics, 2012, 31: 3065–3073CrossRefGoogle Scholar
  200. c).
    Li ZF, Li HX, Yang XP, Liu XW, Zuo GF, Zhao C. RSC Adv, 2015, 5: 31954–31964CrossRefGoogle Scholar
  201. d).
    Wang Y, Liao W, Huang G, Xia Y, Yu ZX. J Org Chem, 2014, 79: 5684–5696CrossRefGoogle Scholar
  202. 83.
    Noyori R, Yamakawa M, Hashiguchi S. J Org Chem, 2001, 66: 7931–7944CrossRefGoogle Scholar
  203. 84.
    Li H, Wang X, Huang F, Lu G, Jiang J, Wang ZX. Organometallics, 2011, 30: 5233–5247CrossRefGoogle Scholar
  204. 85.
    Li H, Wang X, Wen M, Wang ZX. Eur. Inorg Chem, 2012, 5011–5020Google Scholar
  205. 86.
    Li H, Wen M, Wang ZX. Inorg Chem, 2012, 51: 5716–5727CrossRefGoogle Scholar
  206. 87.
    Li H, Hall MB. J Am Chem Soc, 2014, 136: 383–395CrossRefGoogle Scholar
  207. 88.
    Lei M, Pan Y, Ma X. Eur. Inorg Chem, 2015: 794–803Google Scholar
  208. 89.
    Jiang YY, Xu ZY, Yu HZ, Fu Y. Sci China Chem, 2016, 59: 724–729CrossRefGoogle Scholar
  209. 90 a).
    Zhou L, Tang S, Qi X, Lin C, Liu K, Liu C, Lan Y, Lei A. Org Lett, 2014, 16: 3404–3407CrossRefGoogle Scholar
  210. b).
    Liu D, Li Y, Qi X, Liu C, Lan Y, Lei A. Org Lett, 2015, 17: 998–1001CrossRefGoogle Scholar
  211. c).
    Zhou L, Yi H, Zhu L, Qi X, Jiang H, Liu C, Feng Y, Lan Y, Lei A. Sci Rep, 2015, 5: 15934CrossRefGoogle Scholar
  212. 91.
    Binstead RA, Moyer BA, Samuels GJ, Meyer TJ. J Am Chem Soc, 1981, 103: 2897–2899CrossRefGoogle Scholar
  213. 92 a).
    Huynh MHV, Meyer TJ. Chem Rev, 2007, 107: 5004–5064CrossRefGoogle Scholar
  214. b).
    Hammes-Schiffer S. Chem Rev, 2010, 110: 6937–6938CrossRefGoogle Scholar
  215. c).
    Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH. McCafferty DG, Meyer TJ. Chem Rev, 2012, 112: 4016–4093CrossRefGoogle Scholar
  216. 93 a).
    Tishchenko O, Truhlar DG, Ceulemans A, Nguyen MT. J Am Chem Soc, 2008, 130: 7000–7010CrossRefGoogle Scholar
  217. b).
    Skone JH, Soudackov AV, Hammes-Schiffer S. J Am Chem Soc, 2006, 128: 16655–16663CrossRefGoogle Scholar
  218. 94 a).
    Mayer JM, Hrovat DA, Thomas JL, Borden WT. J Am Chem Soc, 2002, 124: 11142–11147CrossRefGoogle Scholar
  219. b).
    Lingwood M, Hammond JR, Hrovat DA, Mayer JM, Borden WT. J Chem Theory Comput, 2006, 2: 740–745CrossRefGoogle Scholar
  220. 95.
    Usharani D, Lacy DC, Borovik AS, Shaik S. J Am Chem Soc, 2013, 135: 17090–17104CrossRefGoogle Scholar
  221. 96 a).
    Lai W, Li C, Chen H, Shaik S. Angew Chem Int Ed, 2012, 51: 5556–5578CrossRefGoogle Scholar
  222. b).
    Li C, Danovich D, Shaik S. Chem Sci, 2012, 3: 1903–1918CrossRefGoogle Scholar
  223. 97.
    Su P, Song L, Wu W, Hiberty PC, Shaik S. J Am Chem Soc, 2004, 126: 13539–13549CrossRefGoogle Scholar
  224. 98 a).
    Cembran A, Provorse MR, Wang C, Wu W, Gao J. J Chem Theory Comput, 2012, 8: 4347–4358CrossRefGoogle Scholar
  225. b).
    Shang R, Yang ZW, Wang Y, Zhang SL, Liu L. J Am Chem Soc, 2010, 132: 14391–14393CrossRefGoogle Scholar
  226. c).
    Li Z, Zhang SL, Fu Y, Guo QX, Liu L. J Am Chem Soc 2009, 131: 8815–8823CrossRefGoogle Scholar
  227. 99 a).
    Becke AD. J Chem Phys, 1993, 98: 5648–5652CrossRefGoogle Scholar
  228. b).
    Lee C, Yang W, Parr RG. Phys Rev B, 1988, 37: 785–789CrossRefGoogle Scholar
  229. 100.
    Zhao Y, Truhlar DG. Acc Chem Res, 2008, 41: 157–167CrossRefGoogle Scholar
  230. 101 a).
    Chai JD. Phys Chem Chem Phys, 2008, 10: 6615–6620CrossRefGoogle Scholar
  231. b).
    Jiang Y, Yu H, Fu Y, Liu L. Sci China Chem, 2015, 58: 673–683CrossRefGoogle Scholar
  232. 102.
    Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  233. 103 a).
    Perdew JP, Yue W. Phys Rev B, 1986, 33: 8800–8802CrossRefGoogle Scholar
  234. b).
    Becke AD. Phys Rev A, 1988, 38: 3098–3100CrossRefGoogle Scholar
  235. c).
    Perdew JP. Phys Rev B, 1986, 33: 8822–8824CrossRefGoogle Scholar
  236. 104.
    Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104CrossRefGoogle Scholar
  237. 105 a).
    Grafenstein J, Izotov D, Cremer D. J Chem Phys, 2007, 127: 214103Google Scholar
  238. b).
    Johnson ER, Becke AD, Sherrill CD. Di Labio GA. J Chem Phys, 2009, 131: 034111CrossRefGoogle Scholar
  239. 106.
    Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B, 2011, 115: 14556–14562CrossRefGoogle Scholar
  240. 107 a).
    Tomasi J, Mennucci B, Cammi R. Chem Rev, 2005, 105: 2999–3093CrossRefGoogle Scholar
  241. b).
    Fu Y, Shen K, Liu L, Guo QX. J Am Chem Soc, 2007, 129: 13510–13519CrossRefGoogle Scholar
  242. 108.
    Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B, 2009, 113: 6378–6396CrossRefGoogle Scholar
  243. 109 a).
    Barone V, Cossi M. J Phys Chem A, 1998, 102: 1995–2001CrossRefGoogle Scholar
  244. b).
    Cossi M, Rega N, Scalmani G, Barone V. J Comp Chem, 2003, 24: 669–681CrossRefGoogle Scholar
  245. 110.
    Klamt A, Schüürmann G. J Chem Soc, Perkin Trans, 1993, 2: 799–805CrossRefGoogle Scholar
  246. 111 a).
    Hay PJ, Wadt WR. J Chem Phys, 1985, 82: 270–283CrossRefGoogle Scholar
  247. b).
    Hay PJ, Wadt WR. J Chem Phys, 1985, 82: 299–310CrossRefGoogle Scholar
  248. 112.
    Ehlers AW, Biihme M, Dapprich S, Gobbi A, Hijllwarth A, Jonas V, Kiihler KF, Stegmann R, Veldkamp A, Frenking G. Chem Phys Lett, 1993, 208: 111–114CrossRefGoogle Scholar
  249. 113 a).
    Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H. Theor Chim Acta, 1990, 77: 123–141CrossRefGoogle Scholar
  250. b).
    Dolg M, Wedig U, Stoll H, Preuss H. J Chem Phys, 1987, 86: 866–872CrossRefGoogle Scholar
  251. 114 a).
    Godbout N, Salahub DR, Andzelm J, Wimmer E. Can. Chem, 1992, 70: 560–571CrossRefGoogle Scholar
  252. b).
    Sosa C, Lee C. J Phys Chem, 1992, 96: 6630–6636CrossRefGoogle Scholar
  253. 115 a).
    Schafer A, Huber C, Ahlrichs R. J Chem Phys, 1994, 100, 5829–5835CrossRefGoogle Scholar
  254. b).
    Schafer A, Horn H, Ahlrichs R. J Chem Phys, 1992, 97: 2571–2577CrossRefGoogle Scholar
  255. 116.
    Peverati R, Truhlar DG. J Phys Chem Lett, 2011, 2: 2810–2817CrossRefGoogle Scholar
  256. 117 a).
    Weigend F, Ahlrichs R. Phys Chem Chem Phys, 2005, 7: 3297–3305CrossRefGoogle Scholar
  257. b).
    Weigend F. Phys Chem Chem Phys, 2006, 8: 1057–1065CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringQufu Normal UniversityQufuChina

Personalised recommendations