Advertisement

Science China Chemistry

, Volume 59, Issue 10, pp 1258–1263 | Cite as

All-solution-processed PIN architecture for ultra-sensitive and ultra-flexible organic thin film photodetectors

  • Zhiwen Jin
  • Qing Zhou
  • Peng Mao
  • Hui Li
  • Jizheng Wang
Articles

Abstract

An ideal organic thin film photodetectors (OTFPs) should adopt a hierarchical, multilayer p-type/blend-type/n-type (PIN) structure, with each layer having a specific purpose which could greatly improve the exciton dissociation while guarantee efficient charge transport. However, for the traditional layer-by-layer solution fabrication procedure, the solvent used can induce organic material mixing and molecular disordering between each layer. Hence, such architecture for OTFPs can now only be formed via thermal evaporation. In this paper, a contact-film-transfer method is demonstrated to all-solution processing organic PIN OTFPs on flexible substrates. The fabricated PIN OTFPs exhibit high photoresponse and high stability under continuous mechanical bending. Hence, the method we described here should represent an important step in the development of OTFPs in the future.

Keywords

organic thin film photodetectors contact-film-transfer method PIN architecture all-solution-processed flexible 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeg KJ, Binda M, Natali D, Caironi M, Noh YY. Adv Mater, 2013, 25: 4267–4295Google Scholar
  2. 2.
    Martino N, Ghezzi D, Benfenati F, Lanzani G, Antognazza MR. J Mater Chem B, 2013, 1: 3768–3780CrossRefGoogle Scholar
  3. 3.
    Jana MK, Chithaiah P, Murali B, Krupanidhi SB, Biswas K, Rao CNR. J Mater Chem C, 2013, 1: 6184–6187CrossRefGoogle Scholar
  4. 4.
    Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y, Huang J. Nat Nanotech, 2012, 7: 798–802CrossRefGoogle Scholar
  5. 5.
    Hu L, Chen M, Shan W, Zhan T, Liao M, Fang X, Hu X, Wu L. Adv Mater, 2012, 24: 5872–5877Google Scholar
  6. 6.
    Jin Z, Gao L, Zhou Q, Wang J. Sci Rep, 2014, 4: 4268Google Scholar
  7. 7.
    Jin Z, Wang J. J Mater Chem C, 2014, 2: 1966–1970Google Scholar
  8. 8.
    Sun Z, Liu Z, Li J, Tai G, Lau SP, Yan F. Adv Mater, 2012, 24: 5878–5883Google Scholar
  9. 9.
    Chitara B, Panchakarla LS, Krupanidhi SB, Rao CNR. Adv Mater, 2011, 23: 5419–5424Google Scholar
  10. 10.
    Zhang BY, Liu T, Meng B, Li X, Liang G, Hu X, Wang QJ. Nat Commun, 2013, 4: 1811CrossRefGoogle Scholar
  11. 11.
    Zhou Y, Wang L, Wang J, Pei J, Cao Y. Adv Mater, 2008, 20: 3745–3749Google Scholar
  12. 12.
    Jin Z, Wang J. Appl Phys Lett, 2013, 102: 053304CrossRefGoogle Scholar
  13. 13.
    Jin Z, Wang J. Sci Rep, 2014, 4: 5331Google Scholar
  14. 14.
    Campana A, Cramer T, Simon DT, Berggren M, Biscarini F. Adv Mater, 2014, 26: 3874–3878Google Scholar
  15. 15.
    Shin M, Song JH, Lim GH, Lim B, Park JJ, Jeong U. Adv Mater, 2014, 26: 3706–3711Google Scholar
  16. 16.
    Tee BCK, Wang C, Allen R, Bao Z. Nat Nanotech, 2012, 7: 825–832CrossRefGoogle Scholar
  17. 17.
    Jeong JW, Huh JW, Lee JI, Chu HY, Pak JJ, Ju BK. Thin Solid Films, 2010, 518: 6343–6347Google Scholar
  18. 18.
    Gao J, Hegmann FA. Appl Phys Lett, 2008, 93: 223306CrossRefGoogle Scholar
  19. 19.
    Peet J, Soci C, Coffin RC, Nguyen TQ, Mikhailovsky A, Moses D, Bazan GC. Appl Phys Lett, 2006, 89: 252105CrossRefGoogle Scholar
  20. 20.
    Li S, Xue D, Xu W, Feng Y, Wang J, Zhang G, Meng X, Wang C, Song Y, Shu C. J Mater Chem C, 2014, 2: 1500–1504Google Scholar
  21. 21.
    Liao HC, Hsu CP, Wu MC, Lu CF, Su WF. Anal Chem, 2013, 85: 9305–9311Google Scholar
  22. 22.
    Günes S, Neugebauer H, Sariciftci NS. Chem Rev, 2007, 107: 1324–1338CrossRefGoogle Scholar
  23. 23.
    Blom PWM, Mihailetchi VD, Koster LJA, Markov DE. Adv Mater, 2007, 19: 1551–4CrossRefGoogle Scholar
  24. 24.
    Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ. Adv Funct Mater, 2005, 15: 1551–1566CrossRefGoogle Scholar
  25. 25.
    Jin Z, Wang J. J Mater Chem C, 2013, 1: 1193–1196Google Scholar
  26. 26.
    Tada A, Geng Y, Wei Q, Hashimoto K, Tajima K. Nat Mater, 2011, 10: 450–455CrossRefGoogle Scholar
  27. 27.
    Bao Z, Dodabalapur A, Lovinger AJ. Appl Phys Lett, 1996, 69: 4108CrossRefGoogle Scholar
  28. 28.
    Wei Q, Miyanishi S, Tajima K, Hashimoto K. ACS Appl Mater Interf, 2009, 1: 2660–2666Google Scholar
  29. 29.
    Wei Q, Tajima K, Hashimoto K. ACS Appl Mater Interf, 2009, 1: 1865–4CrossRefGoogle Scholar
  30. 30.
    Dang MT, Hirsch L, Wantz G. Adv Mater, 2011, 23: 1865–1868CrossRefGoogle Scholar
  31. 31.
    Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V. Org Electron, 2010, 11: 3597–3602CrossRefGoogle Scholar
  32. 32.
    Hamilton MC, Martin S, Kanicki J. IEEE T Electron Dev, 2004, 51: 877–885CrossRefGoogle Scholar
  33. 33.
    Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ. Adv Mater, 2006, 18: 572–576Google Scholar
  34. 34.
    Li L, Lee PS, Yan C, Zhai T, Fang X, Liao M, Koide Y, Bando Y, Golberg D. Adv Mater, 2010, 22: 5145–5149Google Scholar
  35. 35.
    Campoy-Quiles M, Kanai Y, El-Basaty A, Sakai H, Murata H. Org Electron, 2009, 10: 1120–1132CrossRefGoogle Scholar
  36. 36.
    van Bavel SS, Bärenklau M, de With G, Hoppe H, Loos J. Adv Funct Mater, 2010, 20: 1458–1463Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhiwen Jin
    • 1
  • Qing Zhou
    • 1
  • Peng Mao
    • 1
  • Hui Li
    • 1
  • Jizheng Wang
    • 1
  1. 1.National Laboratory for Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations