Science China Chemistry

, Volume 59, Issue 4, pp 394–397 | Cite as

Synthesis of monodispersed Fe3O4@C core/shell nanoparticles

Articles

Abstract

We report a facile method to synthesize dispersed Fe3O4@C nanoparticles (NPs). Fe3O4 NPs were firstly prepared via the high temperature diol thermal decomposition method. Fe3O4@C NPs were fabricated using glucose as a carbon source by hydrothermal process. The obtained products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Raman spectra. The results indicate that the original shapes and magnetic property of Fe3O4 NPs can be well preserved. The magnetic particles are well dispersed in the carbon matrix. This strategy would provide an efficient approach for existing applications in Li-ion batteries and drug delivery. Meanwhile, it offers the raw materials to assemble future functional nanometer and micrometer superstructures.

Keywords

Fe3O4@C monodispersity nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu JW, Xu JJ, Liu ZW, Liu XL, Che RC. Sci China Chem, 2014; 57: 3–12CrossRefGoogle Scholar
  2. 2.
    Wu CL, He H, Gao HJ, Liu G, Ma RJ, An YL, Shi LQ. Sci China Chem, 2010; 53: 514–518CrossRefGoogle Scholar
  3. 3.
    He QL, Yuan TT, Yan XR, Luo ZP, Haldolaarachchige N, Young DP, Wei SY, Guo ZH. Chem Commun, 2014; 50: 201–203CrossRefGoogle Scholar
  4. 4.
    Liu J, Qiao SZ, Hu QH, Lu GQ. Small, 2011; 7: 425–443CrossRefGoogle Scholar
  5. 5.
    Kaushika A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD. Biosens Bioelectron, 2008; 24: 676–683CrossRefGoogle Scholar
  6. 6.
    Bystrzejewski M. Solid J State Chem, 2011; 184: 1492–1498CrossRefGoogle Scholar
  7. 7.
    Wei XW, Zhu GX, Xia CJ, Ye Y. Nanotechnology, 2006; 17: 4307–4311CrossRefGoogle Scholar
  8. 8.
    Tsang SC, Caps V, Paraskevas I, Chadwick D, Thompsett D. Angew Chem Int Ed, 2004; 43: 5645–5649CrossRefGoogle Scholar
  9. 9.
    Zhang D, Wei SY, Kaila C, Su X, Wu J, Karki AB, Young DP, Guo ZH. Nanoscale, 2010; 2: 917–919CrossRefGoogle Scholar
  10. 10.
    Chan HBS, Ellis BL, Sharma HL, Frost W, Caps V, Shields RA, Tsang SC. Adv Mater, 2004; 16: 144–149CrossRefGoogle Scholar
  11. 11.
    Yoon H, Ko S, Jang J. Chem Commun, 2007: 1468–1470Google Scholar
  12. 12.
    Dumitrache F, Morjan I, Alexandrescu R, Morjan RE, Voicu I, Sandu I, Soare I, Ploscaru M, Fleaca C, Ciupina V, Prodan G, Rand B, Brydson R, Woodword A. Diam Relat Mater, 2004; 13: 362–370CrossRefGoogle Scholar
  13. 13.
    Wang ZF, Mao PF, He NY. Carbon, 2006; 44: 3277–3284CrossRefGoogle Scholar
  14. 14.
    Xuan SH, Hao LY, Jiang WQ, Gong XL, Hu Y, Chen ZY. Nanotechnology, 2007, 18: 035602CrossRefGoogle Scholar
  15. 15.
    Wang H, Sun YB, Chen QW, Yu YF, Cheng K. Dalton Trans, 2010; 39: 9565–9569CrossRefGoogle Scholar
  16. 16.
    Du YC, Liu WW, Qiang R, Wang Y, Han XJ, Ma J, Xu P. ACS Appl Mat Interf, 2014, 6: 12997–13006CrossRefGoogle Scholar
  17. 17.
    Wu Z, Li W, Webley PA, Zhao D. Adv Mater, 2012; 24: 485–491CrossRefGoogle Scholar
  18. 18.
    Wang GZ, Gao Z, Tang SW, Chen CQ, Duan FF, Zhao SC, Lin SW, Feng YH, Zhou L, Qin Y. ACS Nano, 2012, 6: 11009–11017CrossRefGoogle Scholar
  19. 19.
    Wu Y, Wei Y, Wang JP, Jiang KL, Fan SS. Nano Lett, 2013; 13: 818–823CrossRefGoogle Scholar
  20. 20.
    Hua CC, Zakaria S, Farahiyan R, Khong LT, Nguyen KL, Abdullah M, Ahmad S. Sains Malays, 2008; 37: 389–394Google Scholar
  21. 21.
    Cannas C, Ardu A, Musinu A, Peddis D, Piccaluga G. Chem Mat, 2008; 20: 6364–6371CrossRefGoogle Scholar
  22. 22.
    Ge JP, Hu YX, Biasini M, Beyermann WP, Yin YD. Angew Chem Int Ed, 2007; 46: 4342–4345CrossRefGoogle Scholar
  23. 23.
    Cannas C, Ardu A, Peddis D, Sangregorio C, Piccaluga G, Musinu A. J Colloid Interf Sci, 2010; 343: 415–422CrossRefGoogle Scholar
  24. 24.
    Jafari A, Boustani K, Shayesteh SF. Supercond J Nov Magn, 2014; 27: 187–194CrossRefGoogle Scholar
  25. 25.
    Zhang WM, Wu XL, Hu JS, Guo YG, Wan LJ. Adv Funct Mater, 2008; 18: 3941–3946CrossRefGoogle Scholar
  26. 26.
    Sun ZH, Wang LF, Liu PP, Wang SC, Sun B, Jiang DZ, Xiao FS. Adv Mater, 2006; 18: 1968–1971CrossRefGoogle Scholar
  27. 27.
    Liu J, Sun ZK, Deng YH, Zou Y, Li CY, Guo XH, Xiong LQ, Gao Y, Li FY, Zhao DY. Angew Chem Int Ed, 2009; 48: 5875–5879CrossRefGoogle Scholar
  28. 28.
    Frenkel JDJ. Nature, 1930; 126: 274–275CrossRefGoogle Scholar
  29. 29.
    Iida H, Takayanagi K, Nakanishi T, Osaka T. J Colloid Interf Sci, 2007; 314: 274–280CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education); Department of PhysicsBeihang UniversityBeijingChina

Personalised recommendations