Science China Chemistry

, Volume 59, Issue 4, pp 412–419 | Cite as

Understanding the adsorption mechanism of Ni(II) on graphene oxides by batch experiments and density functional theory studies

Articles

Abstract

The graphene oxides (GOs) have attracted multidisciplinary study because of their special physicochemical properties. The high surface area and large amounts of oxygen-containing functional groups make GOs suitable materials for the efficient elimination of heavy metal ions from aqueous solutions. Herein the sorption of Ni(II) on GOs was studied using batch experiments, and the results showed that the sorption of Ni(II) is strongly dependent on pH and ionic strength at pH<8, and independent of ionic strength at pH>8. The sorption of Ni(II) is mainly dominated by outer-sphere surface complexation and ion exchange at low pH, and by inner-sphere surface complexation at high pH. The interaction of Ni(II) with GOs was also investigated by theoretical density functional theory (DFT) calculations, and the results show that the sorption of Ni(II) on GOs is mainly attributed to the–COH and–COC groups and the DFT calculations show that Ni(II) forms stable GO_Ni_triplet structure with the binding energy of -39.44 kcal/mol, which is in good agreement with the batch sorption experimental results. The results are important for the application of GOs as adsorbents in the efficient removal of Ni(II) from wastewater in environmental pollution cleanup.

Keywords

graphene oxides Ni(II) sorption DFT calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao YG, Wang XX, Li JX, Wang XK. Polym Chem, 2015, 6: 5376–5384CrossRefGoogle Scholar
  2. 2.
    Ding CC, Cheng WC, Sun YB, Wang XK. Geochim Cosmochim Acta, 2015, 165: 86–107CrossRefGoogle Scholar
  3. 3.
    Chen CL, Wang XK. Ind Eng Chem Res, 2006, 45: 9144–9149CrossRefGoogle Scholar
  4. 4.
    Reddad Z, Gerente C, Andres Y. Le Cloirec P. Environ Sci Technol, 2002, 36: 2067–2073CrossRefGoogle Scholar
  5. 5.
    Bradbury MH, Baeyens B. Geochim Cosmochim Acta, 1999, 63: 325–336CrossRefGoogle Scholar
  6. 6.
    Yang ST, Sheng GD, Tan XL, Hu J, Du JZ, Montavon G, Wang XK. Geochim Cosmochim Acta, 2011, 75: 6520–6534CrossRefGoogle Scholar
  7. 7.
    Yang ST, Ren XM, Zhao GX, Shi WQ, Montavon G, Grambow B, Wang XK. Geochim Cosmochim Acta, 2015, 166: 129–145CrossRefGoogle Scholar
  8. 8.
    Dähn R, Scheidegger AM, Manceau A, Schlegel ML, Baeyens B, Bradbury MH, Chateigner D. Geochim Cosmochim Acta, 2003, 67: 1–15CrossRefGoogle Scholar
  9. 9.
    Sheng GD, Yang ST, Sheng J, Hu J, Tan XL, Wang XK. Environ Sci Technol, 2011, 45: 7718–7726CrossRefGoogle Scholar
  10. 10.
    Wang Q, Wang XK, Chai ZF, Hu WP. Chem Soc Rev, 2013, 42: 8821–8834CrossRefGoogle Scholar
  11. 11.
    Yu SJ, Wang XX, Tan XL, Wang XK. Inorg Chem Front, 2015, 2: 593–612CrossRefGoogle Scholar
  12. 12.
    Zhao GX, Ren XM, Gao X, Tan XL, Li JX, Chen CL, Huang YY, Wang XK. Dalton Trans, 2011, 40: 10945–10952CrossRefGoogle Scholar
  13. 13.
    Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS. Adv Mater, 2010, 22: 3906–3924CrossRefGoogle Scholar
  14. 14.
    Zhao GX, Li JX, Ren XM, Chen CL, Wang XK. Environ Sci Technol, 2011, 45:10454–10462CrossRefGoogle Scholar
  15. 15.
    Yang SB, Chen CL, Chen Y, Li JX, Wang DQ, Wang XK, Hu WP. ChemPlusChem, 2015, 80: 480–484CrossRefGoogle Scholar
  16. 16.
    Sun YB, Wang Q, Chen CL, Tan XL, Wang XK. Environ Sci Technol, 2012, 46: 6020–6027CrossRefGoogle Scholar
  17. 17.
    Wang XX, Chen ZS, Wang XK. Sci China Chem, 2015, 58: 1766–1773CrossRefGoogle Scholar
  18. 18.
    Yang ST, Chang YL, Wang HF, Liu GB, Chen S, Wang YW, Liu YF, Cao AN. J Colloid Interf Sci, 2010, 351: 122–127CrossRefGoogle Scholar
  19. 19.
    Boukhvalov DW, Katsnelson MI. J Am Chem Soc, 2008, 130: 10697–10701CrossRefGoogle Scholar
  20. 20.
    Jung I, Dikin DA, Piner RD, Ruoff RS. Nano Lett, 2008, 8: 4283–4287CrossRefGoogle Scholar
  21. 21.
    Yang SB, Wang XX, Dai SY, Wang XK, Alshomrani AS, Hayat T, Ahmad B. J Radioanal Nucl Chem, 2015, doi: 101007/s10967-015-4425-6Google Scholar
  22. 22.
    Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1997, 78: 1396CrossRefGoogle Scholar
  23. 23.
    Balabanov NB, Peterson KA. J Chem Phys, 2005, 123: 064107 Google Scholar
  24. 24.
    Cossi M, Barone V, Robb MA. J Chem Phys, 1999, 111: 5295–5302CrossRefGoogle Scholar
  25. 25.
    Cossi M, Rega N, Scalmani G, Barone V. J Comput Chem, 2003, 24: 669–681CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani GE, Barone V, Mennucci B, Petersson GA. Gaussian 09, Revision A 02. Wallingford, CT: Gaussian Inc., 2009Google Scholar
  27. 27.
    Yang SB, Wu XL, Chen CL, Dong HL, Hu WP, Wang XK. Chem Commun, 2012, 48: 2773–2775CrossRefGoogle Scholar
  28. 28.
    Eda G, Chhowalla M. Adv Mater, 2010, 22: 2392–2415CrossRefGoogle Scholar
  29. 29.
    Zhao GX, Jiang L, He YD, Li JX, Dong HL, Wang XK, Hu WP. Adv Mater, 2011, 23: 3959–3963CrossRefGoogle Scholar
  30. 30.
    Shao DD, Li JX, Wang XK. Sci China Chem, 2014, 57: 1449–1458CrossRefGoogle Scholar
  31. 31.
    Song WC, Shao DD, Lu SS, Wang XK. Sci China Chem, 2014, 57: 1291–1299CrossRefGoogle Scholar
  32. 32.
    Yang ST, Li JX, Shao DD, Hu J, Wang XK. J Hazard Mater, 2009, 166: 109–116CrossRefGoogle Scholar
  33. 33.
    Mercer KL, Tobiason JE. Environ Sci Technol, 2008, 42: 3797–3802CrossRefGoogle Scholar
  34. 34.
    Reddad Z, Gerente C, Andres Y, Cloirec LP. Environ Sci Technol, 2002, 36: 2067–2073CrossRefGoogle Scholar
  35. 35.
    Hayes KF, Leckie JO. J Colloid Interf Sci, 1987, 115: 564–572CrossRefGoogle Scholar
  36. 36.
    Tan P, Sun J, Hu YY, Fang Z, Bi Q, Chen YC, Cheng JH. J Hazard Mater, 2015, 297: 251–260CrossRefGoogle Scholar
  37. 37.
    Tan X, Fang M, Chen C, Yu S, Wang X. Carbon, 2008, 46: 1741–1750CrossRefGoogle Scholar
  38. 38.
    Debnath S, Ghosh UC. Chem Eng J, 2009, 152: 480–491CrossRefGoogle Scholar
  39. 39.
    Yang S, Li J, Shao D, Hu J, Wang X. J Hazard Mater, 2009, 166: 109–116CrossRefGoogle Scholar
  40. 40.
    Casabianca LB, Shaibat MA, Cai WW, Park S, Piner R, Ruoff RS, Ishii Y. J Am Chem Soc, 2010, 132: 5672–5676CrossRefGoogle Scholar
  41. 41.
    Lan JH, Cao DP, Wang WC, Smit B. ACS Nano, 2010, 4: 4225–4237CrossRefGoogle Scholar
  42. 42.
    Berland K, Arter CA, Cooper VR, Lee K, Lundqvist BI. Schröder E, Thonhauser T, Hyldgaard P. J Chem Phys, 2014, 140: 18A539CrossRefGoogle Scholar
  43. 43.
    Mastalerz R, Widmark PO, Roos B, Lindh R, Reiher M. J Chem Phys, 2010, 133: 144111CrossRefGoogle Scholar
  44. 44.
    Lane JR. Contreras-García J, Piquemal JP, Miller BJ, Kjaergaard HG. J Chem Theory Comput, 2013, 9: 3263–3266CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Chemistry and EnvironmentNorth China Electric Power UniversityBeijingChina
  2. 2.Department of ChemistryQinghai Normal UniversityXiningChina
  3. 3.NAAM Research Group, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations