Science China Chemistry

, Volume 59, Issue 2, pp 171–174 | Cite as

C–H allylation of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with iodide catalysis

Articles SPECIAL TOPIC · Organic Photochemistry

Abstract

A dual catalytic system, combing visible light photoredox catalysis and iodide catalysis, has been developed for the functionalization of inert C–H bonds. By doing so, radical allylation reactions of N-aryl-tetrahydroisoquinolines (THIQs) were realized under extremely mild conditions, affording a wide variety of allyl-substituted THIQs in up to 78% yields.

Keywords

visible light photocatalysis iodide catalysis allylation tetrahydroisoquinolines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2015_5548_MOESM1_ESM.pdf (1.8 mb)
Supplementary material, approximately 1037 KB.

References

  1. 1.
    For selected reviews and books on transition metal catalysis and C–H activation, see: a) HickmanAJ, Sanford MS. Nature, 2012, 484: 177–185Google Scholar
  2. b).
    Yeung CS, Dong VM. Chem Rev, 2011, 111: 1215–1292CrossRefGoogle Scholar
  3. c).
    Ackermann L. Chem Rev, 2011, 111: 1315–1345CrossRefGoogle Scholar
  4. d).
    Davies HM, Du Bois J, Yu JQ. Chem Soc Rev, 2011, 40: 1855–1856CrossRefGoogle Scholar
  5. e).
    Yu JQ, Shi ZJ. Topics in Current Chemistry. Heidelberg: Springer, 2010Google Scholar
  6. f).
    Dyker G. Handbook of C–H Transformations. Weinheim: Wiley-VCH, 2005CrossRefGoogle Scholar
  7. g).
    Beller M, Bolm C. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Vol. 1 and 2. 2nd Ed, Weinheim: Wiley-VCH, 2004Google Scholar
  8. 2.
    For selected reviews and books, see: a) Zhuo CX, Zheng C, You SL. Acc Chem Res, 2014, 47: 2258–1856Google Scholar
  9. b).
    Bandini M. Angew Chem Int Ed, 2011, 50: 994–995CrossRefGoogle Scholar
  10. c).
    Trost BM, Lee C. Catalytic Asymmetric Synthesis. 2nd Ed. New York: Wiley-VCH, 2010. 593–649Google Scholar
  11. d).
    Lu Z, Ma S. Angew Chem Int Ed, 2008, 47: 258–297CrossRefGoogle Scholar
  12. e).
    Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century. Chichester: Wiley, 2004: 431–518Google Scholar
  13. f).
    Dai LX, Tu T, You SL, Deng WP, Hou XL. Acc Chem Res, 2003, 36: 659–667CrossRefGoogle Scholar
  14. 3.
    For selected papers on reduction of π-allylpalladium complexes to allylic radicals, see: a) Millán A, Martín-Lasanta A, Miguel D, Cienfuegos LA, Cuerva JM. Chem Commun, 2011, 47: 10470–10472Google Scholar
  15. b).
    Millán A, Campana AG, Bazdi B, Miguel D, Cienfuegos LA, Echavarren AM, Cuerva JM. Chem Eur J, 2011, 17: 3985–3994CrossRefGoogle Scholar
  16. c).
    Campana AG, Bazdi B, Fuentes N, Robles R, Cuerva JM. Angew Chem Int Ed, 2008, 47: 7515–7519CrossRefGoogle Scholar
  17. d).
    Sasaoka SI, Yamamoto T, Kinoshita H, Inomata K, Kotake H. Chem Lett, 1985, 315–318Google Scholar
  18. 4.
    For selected reviews, see: a) Narayanam JM, Stephenson CR. Chem Soc Rev, 2011, 40: 102–113Google Scholar
  19. b).
    Teplý F. Collect Czech Chem Commun, 2011, 76: 859–917CrossRefGoogle Scholar
  20. c).
    Shi L, Xia W. Chem Soc Rev, 2012, 41: 7687–7697CrossRefGoogle Scholar
  21. d).
    Xuan J, Xiao WJ. Angew Chem Int Ed, 2012, 51: 6828-6838Google Scholar
  22. e).
    Prier CK, Rankic DA, MacMillan DW. Chem Rev, 2013, 113: 5322–5363CrossRefGoogle Scholar
  23. f).
    Ravelli D, Fagnoni M, Albini A. Chem Soc Rev, 2013, 42: 97–113CrossRefGoogle Scholar
  24. g).
    Xi Y, Yi H, Lei A. Org Biomol Chem, 2013, 11: 2387–2403CrossRefGoogle Scholar
  25. h).
    Schultz DM, Yoon TP. Science, 2014, 343: 1239176CrossRefGoogle Scholar
  26. 5.
    For reviews and books on dual catalysis merging visible light photocatalysis with other catalytic manners, see: a) Hopkinson MN, SahooB, Li J, Glorius F. Chem Eur J, 2014, 20: 3874–3886Google Scholar
  27. b).
    Zeitler K, Neumann M. Synergistic visible light photoredox catalysis. In: König B, Ed. Chemical Photocatalysis. Germany: Walter de Gruyter, 2013. 151–168.Google Scholar
  28. 5.
    For recent examples with palladium catalysis, see: c) Xuan J, Zeng TT, Feng ZJ, Deng QH, Chen JR, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2015, 54: 1625–1628Google Scholar
  29. d).
    Lang SB, O’Nele K, Tunge JA. J Am Chem Soc, 2014, 136: 13606–13609.CrossRefGoogle Scholar
  30. 5.
    With gold catalysis, see: e) Hopkinson MN, Sahoo B, Glorius F. Adv Synth Catal, 2014, 356: 2794–2800Google Scholar
  31. f).
    Shu XZ, Zhang M, He Y, Frei H, Toste FD. J Am Chem Soc, 2014, 136: 5844–5847.CrossRefGoogle Scholar
  32. 5.
    With nickel catalysis, see: g) Xuan J, Zeng TT, Chen JR, Lu LQ, Xiao WJ. Chem Eur J, 2015, 21: 4962–4965.Google Scholar
  33. 5.
    With others, see: h) Feng ZJ, Xuan J, Xia XD, Ding W, Guo W, Chen JR, Zou YQ, Lu LQ, Xiao WJ. Org Biomol Chem, 2014, 12: 2037–2040Google Scholar
  34. i).
    Bergonzini G, Schindler CS, Wallentin CJ, Jacobsen EN, Stephenson CRJ. Chem Sci, 2014, 5: 112–116CrossRefGoogle Scholar
  35. 6 a).
    Zou YQ, Lu LQ, Fu L, Chang NJ, Rong J, Chen JR, Xiao WJ. Angew Chem Int Ed, 2011, 50: 7171–7175CrossRefGoogle Scholar
  36. b).
    Xuan J, Cheng Y, An J, Lu LQ, Zhang XX, Xiao WJ. Chem Commun, 2011, 47: 8337–8339CrossRefGoogle Scholar
  37. c).
    Zou YQ, Chen JR, Liu XP, Lu LQ, Davis RL, Jørgensen KA, Xiao WJ. Angew Chem Int Ed, 2012, 51: 784–788CrossRefGoogle Scholar
  38. d).
    Xuan J, Feng ZJ, Duan SW, Xiao WJ. RSC Adv, 2012, 2: 4065–4068CrossRefGoogle Scholar
  39. e).
    Xuan J, Xia XD, Zeng TT, Feng ZJ, Chen JR, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2014, 53: 5653–5656, and Refs. [3c,3g,3k]CrossRefGoogle Scholar
  40. 7.
    Nguyen JD, D’Amato EM, Narayanam JM, Stephenson CR. Nat Chem, 2012, 4: 854–859CrossRefGoogle Scholar
  41. 8.
    For selected reviews, see: a) Wei Y, Shi M. Acc Chem Res, 2010, 43: 1005–1018Google Scholar
  42. b).
    Dai LX, Hou XL. Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications. Weinheim: Wiley-VCH, 2010Google Scholar
  43. c).
    List B. Asymmetric Organocatalysis. Heidlberg: Springer, 2010Google Scholar
  44. d).
    Denmark SE, Beutner GL. Angew Chem Int Ed, 2008, 47: 1560–1638CrossRefGoogle Scholar
  45. f).
    Fu GC. Acc Chem Res, 2006, 39: 853–860CrossRefGoogle Scholar
  46. 9 a).
    Carnes ME, Collins MS, Lindquist NR, Percástegui EG, Pluth MD, Johnson DW. Chem Commun, 2014, 50: 73–75CrossRefGoogle Scholar
  47. b).
    Patel K, Miljanić OS, Stoddart JF. Chem Commun, 2008, 44: 1853–1855CrossRefGoogle Scholar
  48. c).
    de Sousa AL, Resck IS. J Braz Chem Soc, 2002, 13: 233–237CrossRefGoogle Scholar
  49. d).
    Tipson RS, Clapp MA, Cretcher LH. J Org Chem, 1947, 12: 133–138CrossRefGoogle Scholar
  50. 10.
    For detailed condition optimization, including the evaluation of photocatalysts, solvents, light sources and bases, see Supporting InformationGoogle Scholar
  51. 11.
    General Procedure: In a 10 mL dry flask equipped with magnetic bar was charged with 1 (0.5 mmol, 1.0 equiv.) and Ir(bpy)2(dtbbpy)PF6 (2 mol%), 5 (0.75 mmol, 1.5 equiv.), KI (20 mol%), NaCO2CF3 (1.0 mmol, 2.0 equiv.) and MeCN (5 mL). The mixture was degassed via freeze-pump-thaw method (3 times) and then stirred under the irradiation of 7 W blue LEDs at room temperature for 12 h. The resultant mixture was filtered under vacuum to remove the solid. The filtrate was purified by flash chromatography on silica gel (petroleum ether/DCM=10:1) to afford the desired product 3. Analytical data of 1-allyl-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3a): light yellow oil; 1H NMR (600 MHz, CDCl3) δ (ppm) 7.18 (m, 6H), 6.89 (d, J=8.2 Hz, 2H), 6.73 (t, J=7.1 Hz, 1H), 5.89–5.82 (m, 1H), 5.06 (t, J=13.1 Hz, 2H), 4.74 (t, J=6.7 Hz, 1H), 3.72–3.52 (m, 2H), 3.08–2.96 (m, 1H), 2.88 (dt, J=15.7, 5.2 Hz, 1H), 2.78–2.65 (m, 1H), 2.49 (dt, J=14.1, 7.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ (ppm) 149.4, 138.1, 135.6, 134.9, 129.2, 128.5, 127.3, 126.5, 125.7, 117.2, 117.0, 113.8, 59.3, 41.9, 40.9, 27.4; HRMS: m/z (ESI) calculated [M+H]+ 250.1590, measured 250.1594.Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CCNU-uOttawa Joint Research Center, College of ChemistryCentral China Normal UniversityWuhanChina

Personalised recommendations