Science China Chemistry

, Volume 59, Issue 4, pp 452–458 | Cite as

A facile one-pot synthesis of supercubes of Pt nanocubes

Articles

Abstract

A facile one-pot synthetic strategy is developed to prepare high-quality Pt supercubes. The as-synthesized Pt supercubes are composed of the uniform Pt nanocubes arranged in a primitive cubic structure. The shape and size of the Pt superparticles are readily tuned by varying the structures of pyridyl-containing ligands used in the synthesis. The co-presence of CO and nitrogen-containing ligands is critical to the formation of Pt supercubes. While CO molecules play an important role in the synthesis of Pt nanocube, introducing nitrogen-containing ligands is essential to the successful assembly of those nanocubes into Pt supercubes. Our systematic studies reveal that the electrostatic attraction between positively charged ligands and negatively charged Pt nanocubes is the main driving force for the assembly of Pt nanocubes into supercubes. More importantly, the ligands within the Pt supercubes are readily removed at relatively low temperature to yield surface-clean supercubes which are expected to exhibit unique size-selective catalysis.

Keywords

platinum nanocube supercube self-assembly electrostatic interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2015_5545_MOESM1_ESM.pdf (849 kb)
Supplementary material, approximately 850 KB.

References

  1. 1.
    Yin YD, Alivisatos AP. Nature, 2005, 437: 664–670CrossRefGoogle Scholar
  2. 2.
    Wu BH, Zheng NF. Nano Today, 2013, 8: 168–197CrossRefGoogle Scholar
  3. 3.
    Thanh-Dinh N. Nanoscale, 2013, 5: 9455–9482CrossRefGoogle Scholar
  4. 4.
    Jin RC, Nobusada K. Nano Res, 2014, 7: 285–300CrossRefGoogle Scholar
  5. 5.
    Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV. Chem Rev, 2010, 110: 389–458CrossRefGoogle Scholar
  6. 6.
    Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzan LM. Nanoscale, 2011, 3: 1304–1315CrossRefGoogle Scholar
  7. 7.
    Lu ZD, Yin YD. Chem Soc Rev, 2012, 41: 6874–6887CrossRefGoogle Scholar
  8. 8.
    Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB. Nature, 2006, 439: 55–59CrossRefGoogle Scholar
  9. 9.
    Wang T, LaMontagne D, Lynch J, Zhuang JQ, Cao YC. Chem Soc Rev, 2013, 42: 2804–2823CrossRefGoogle Scholar
  10. 10.
    Bai F, Wang DS, Huo ZY, Chen W, Liu LP, Liang X, Chen C, Wang X, Peng Q, Li YD. Angew Chem Int Ed, 2007, 46: 6650–6653CrossRefGoogle Scholar
  11. 11.
    Boeker A, He J, Emrick T, Russell TP. Soft Matter, 2007, 3: 1231–1248CrossRefGoogle Scholar
  12. 12.
    Dong AG, Chen J, Vora PM, Kikkawa JM, Murray CB. Nature, 2010, 466: 474–477CrossRefGoogle Scholar
  13. 13.
    Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM. ACS Nano, 2010, 4: 3591–3605CrossRefGoogle Scholar
  14. 14.
    Hu S, Wang X. Sci China Chem, 2012, 55: 2257–2271CrossRefGoogle Scholar
  15. 15.
    Klajn R, Bishop KJM, Fialkowski M, Paszewski M, Campbell CJ, Gray TP, Grzybowski BA. Science, 2007, 316: 261–264CrossRefGoogle Scholar
  16. 16.
    Nie ZH, Fava D, Kumacheva E, Zou S, Walker GC, Rubinstein M. Nat Mater, 2007, 6: 609–614CrossRefGoogle Scholar
  17. 17.
    Sau TK, Murphy CJ. Langmuir, 2005, 21: 2923–2929CrossRefGoogle Scholar
  18. 18.
    Wang PP, Yu QY, Long Y, Hu S, Zhuang J, Wang X. Nano Res, 2012, 5: 283–291CrossRefGoogle Scholar
  19. 19.
    Zhuang JQ, Shaller AD, Lynch J, Wu HM, Chen O, Li ADQ, Cao YC. J Am Chem Soc, 2009, 131: 6084–6085CrossRefGoogle Scholar
  20. 20.
    Park JI, Jun YW, Choi JS, Cheon J. Chem Commun, 2007, 5001–5003Google Scholar
  21. 21.
    Wang T, Wang XR, LaMontagne D, Wang ZL, Wang ZW, Cao YC. J Am Chem Soc, 2012, 134: 18225–18228CrossRefGoogle Scholar
  22. 22.
    Kang YJ, Ye XC, Chen J, Qi L, Diaz RE, Doan-Nguyen V, Xing GZ, Kagan CR, Li J, Gorte RJ, Stach EA, Murray CB. J Am Chem Soc, 2013, 135: 1499–1505CrossRefGoogle Scholar
  23. 23.
    Zhang S, Shao YY, Yin GP, Lin YH. J Mater Chem, 2010, 20: 2826–2830CrossRefGoogle Scholar
  24. 24.
    Nishida N, Shibu ES, Yao H, Oonishi T, Kimura K, Pradeep T. Adv Mater, 2008, 20: 4719–4723CrossRefGoogle Scholar
  25. 25.
    Hu CY, Lin KQ, Wang XL, Liu SJ, Yi J, Tian Y, Wu BH, Chen GX, Yang HY, Dai Y, Li H, Zheng NF. J Am Chem Soc, 2014, 136: 12856–12859CrossRefGoogle Scholar
  26. 26.
    Braun G, Lee SJ, Dante M, Nguyen TQ, Moskovits M, Reich N. J Am Chem Soc, 2007, 129: 6378–6379CrossRefGoogle Scholar
  27. 27.
    Guo SJ, Sun SH. J Am Chem Soc, 2012, 134: 2492–2495CrossRefGoogle Scholar
  28. 28.
    Han JS, Zhang X, Zhou YB, Ning Y, Wu J, Liang S, Sun HC, Zhang H, Yang B. J Mater Chem, 2012, 22: 2679–2686CrossRefGoogle Scholar
  29. 29.
    Nie ZH, Petukhova A, Kumacheva E. Nat Nanotechnol, 2010, 5: 15–25CrossRefGoogle Scholar
  30. 30.
    Sun SH. Adv Mater, 2006, 18: 393–403CrossRefGoogle Scholar
  31. 31.
    Sun XH, Zhu X, Zhang N, Guo J, Guo SJ, Huang XQ. Chem Commun, 2015, 51: 3529–3532CrossRefGoogle Scholar
  32. 32.
    Wang DH, Kou R, Choi D, Yang ZG, Nie Z, Li J, Saraf LV, Hu DH, Zhang JG, Graff GL, Liu J, Pope MA, Aksay IA. ACS Nano, 2010, 4: 1587–1595CrossRefGoogle Scholar
  33. 33.
    Zhu K, Wang DH, Liu J. Nano Res, 2009, 2: 1–29CrossRefGoogle Scholar
  34. 34.
    Kalsin AM, Fialkowski M, Paszewski M, Smoukov SK, Bishop KJM, Grzybowski BA. Science, 2006, 312: 420–424CrossRefGoogle Scholar
  35. 35.
    Meng LR, Chen WM, Tan YW, Zou L, Chen CP, Zhou HP, Peng Q, Li YD. Nano Res, 2011, 4: 370–375CrossRefGoogle Scholar
  36. 36.
    Bishop KJM, Wilmer CE, Soh S, Grzybowski BA. Small, 2009, 5: 1600–1630CrossRefGoogle Scholar
  37. 37.
    Jenekhe SA, Chen XL. Science, 1998, 279: 1903–1907CrossRefGoogle Scholar
  38. 38.
    Kuzyk A, Schreiber R, Fan ZY, Pardatscher G, Roller EM, Hoegele A, Simmel FC, Govorov AO, Liedl T. Nature, 2012, 483: 311–314CrossRefGoogle Scholar
  39. 39.
    Sharma J, Chhabra R, Liu Y, Ke YJ, Yan H. Angew Chem Int Ed, 2006, 45: 730–735CrossRefGoogle Scholar
  40. 40.
    Maye MM, Lim IIS, Luo J, Rab Z, Rabinovich D, Liu TB, Zhong CJ. J Am Chem Soc, 2005, 127: 1519–1529CrossRefGoogle Scholar
  41. 41.
    Andrew KB. Boal FI, Jason ED, Thomas TA, Thomas PR, Vincent MR. Nature, 2000, 404: 746–748CrossRefGoogle Scholar
  42. 42.
    Hu MJ, Lin B, Yu SH. Nano Res, 2008, 1: 303–313CrossRefGoogle Scholar
  43. 43.
    Carroll JB, Frankamp BL, Srivastava S, Rotello VM. J Mater Chem, 2004, 14: 690–694CrossRefGoogle Scholar
  44. 44.
    Lim II, Pan Y, Mott D, Ouyang J, Njoki PN, Luo J, Zhou S, Zhong CJ. Langmuir, 2007, 23: 10715–10724CrossRefGoogle Scholar
  45. 45.
    Frankamp BL, Boal AK, Rotello VM. J Am Chem Soc, 2002, 124: 15146–15147CrossRefGoogle Scholar
  46. 46.
    Chen GX, Tan YM, Wu BH, Fu G, Zheng NF. Chem Commun, 2012, 48: 2758–2760CrossRefGoogle Scholar
  47. 47.
    Wu J, Zhang X, Yao TJ, Li J, Zhang H, Yang B. Langmuir, 2010, 26: 8751–8757CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory for Physical Chemistry of Solid Surfaces; Collaborative Innovation Center of Chemistry for Energy Materials; Engineering Research Center for Nano-Preparation Technology of Fujian Province; College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.Pen-Tung Sah Institute of Micro-Nano Science and TechnologyXiamen UniversityXiamenChina

Personalised recommendations