Science China Chemistry

, Volume 59, Issue 4, pp 398–404 | Cite as

Estimation of the desorption energy of dichloromethane and water in MIL-53 by DSC and ab-initio calculations

Articles

Abstract

Desorption energies of dichloromethane (CH2Cl2) and water (H2O) in a metal-organic framework, MIL-53(Al), were investigated by the combination of experimental (differential scanning calorimeter, DSC) and computational (ab-initio calculations) methods. The differences of desorption energy and natural log of the frequency factor of CH2Cl2 and H2O in MIL-53(Al) were analyzed by a thermo active process using DSC measurements. The interaction energy of guest molecules with MIL-53(Al), which correspond to the desorption in the thermal active process, was explored using ab-initio calculation. As a result of the difference in the interaction energies of H2O and CH2Cl2 in MIL-53(Al), the site near the μ2-OH groups has two potential wells. Both experimentally and computationally, MIL-53 presents the preferential adsorption of CH2Cl2 than H2O.

Keywords

metal organic framework desorption energy DSC ab-initio calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2015_5544_MOESM1_ESM.doc (450 kb)
Supplementary material, approximately 450 KB.

References

  1. 1.
    Xia QB, Li Z, Xiao LM, Zhang ZJ, Xi H. J Hazard Mater, 2010, 1–3: 790–794CrossRefGoogle Scholar
  2. 2.
    Yan JL, Jiang S, Ji SF, Shi D, Cheng HF. Sci China Chem, 2015: 1–8Google Scholar
  3. 3.
    Neimark AV, Coudert FX, Triguero C, Boutin A, Fuchs AH, Beurroies I, Denoyel R. Langmuir, 2011, 8: 4734–4741CrossRefGoogle Scholar
  4. 4.
    Neimark AV, Coudert FX, Boutin A, Fuchs AH. J Phys Chem L, 2010, 1: 445–449CrossRefGoogle Scholar
  5. 5.
    Beurroies I, Boulhout M, Llewellyn PL, Kuchta B, Férey G, Serre C, Denoyel R. Angew Chem Int Ed, 2010, 41: 7526–7529CrossRefGoogle Scholar
  6. 6.
    Boutin A, Bousquet D, Ortiz AU, Coudert FX, Fuchs AH, Ballandras A, Weber G, Bezverkhyy I, Bellat J, Ortiz G, Chaplais G, Paillaud J, Marichal C, Nouali H, Patarin J. J Phys Chem C, 2013, 16: 8180–8188CrossRefGoogle Scholar
  7. 7.
    Walker AM, Civalleri B, Slater B, Mellot Draznieks C, Corà F, Zicovich Wilson CM, Soler JM, Gale JD. Angew Chem Int Ed, 2010: 7501–7503Google Scholar
  8. 8.
    Pera-Titus M, Lescouet T, Aguado S, Farrusseng D. J Phys Chem C, 2012, 17: 9507–9516CrossRefGoogle Scholar
  9. 9.
    Coudert FX, Boutin A, Fuchs AH, Neimark AV. J Phys Chem L, 2013, 19: 3198–3205CrossRefGoogle Scholar
  10. 10.
    Férey G, Serre C. Chem Soc Rev, 2009Google Scholar
  11. 11.
    Boutin A, Coudert FX, Springuel-Huet MA, Neimark AV, Férey G, Fuchs AH. J Phys Chem C, 2010, 50: 22237–22244CrossRefGoogle Scholar
  12. 12.
    Ghoufi A, Subercaze A, Ma Q, Yot PG, Ke Y, Puente-Orench I, Devic T, Guillerm V, Zhong C, Serre C, Férey G, Maurin G. J Phys Chem C, 2012, 24: 13289–13295CrossRefGoogle Scholar
  13. 13.
    Devic T, Salles F, Bourrelly S, Moulin B, Maurin G, Horcajada P, Serre C, Vimont A, Lavalley JC, Leclerc H. J Mater Chem, 2012, 20: 10266–10273CrossRefGoogle Scholar
  14. 14.
    Haigis V, Coudert FX, Vuilleumier R, Boutin A. Phys Chem Chem Phys, 2013, 43: 19049–19056CrossRefGoogle Scholar
  15. 15.
    Devautour-Vinot S, Maurin G, Henn F, Serre C, Devic T, Férey G. Chem Commun, 2009, 19: 2733CrossRefGoogle Scholar
  16. 16.
    Devautour-Vinot S, Maurin G, Henn FO, Serre C, Férey G. Phys Chem Chem Phys, 2010, 39: 12478–12485CrossRefGoogle Scholar
  17. 17.
    Paesani F. Mol Simulat, 2012, 8–9: 631–641Google Scholar
  18. 18.
    Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. Chem Eur J, 2004, 6: 1373–1382CrossRefGoogle Scholar
  19. 19.
    Salles F, Ghoufi A, Maurin G, Bell R G, Mellot-Draznieks C, Férey G. Angew Chem Int Ed, 2008, 8487–8491Google Scholar
  20. 20.
    Salazar JM, Weber G, Simon JM, Bezverkhyy I, Bellat JP. J Chem Phys, 2015, 12: 124702CrossRefGoogle Scholar
  21. 21.
    Zhao Y, Truhlar DG. Theor Chem Acc, 2008, 1–3: 215–241CrossRefGoogle Scholar
  22. 22.
    Sillar K, Hofmann A, Sauer J. J Am Chem Soc, 2009, 11: 4143–4150CrossRefGoogle Scholar
  23. 23.
    Bordiga S, Vitillo JG, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bj Rgen M, Hafizovic J, Lillerud KP. J Phys Chem B, 2005, 39: 18237–18242CrossRefGoogle Scholar
  24. 24.
    Sagara T, Klassen J, Ortony J, Ganz E. J Chem Phys, 2005, 1: 164–170Google Scholar
  25. 25.
    Pires J, Pinto ML, Saini VK. ACS Appl Mater Inter, 2014, 15: 12093–12099CrossRefGoogle Scholar
  26. 26.
    Kuc A, Heine T, Seifert G, Duarte HA. Chem Eur J, 2008, 22: 6597–6600CrossRefGoogle Scholar
  27. 27.
    Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W. J Am Chem Soc, 2013, 135:10525–10532CrossRefGoogle Scholar
  28. 28.
    Yu J, Balbuena PB. J Phys Chem C, 2013, 7: 3383–3388CrossRefGoogle Scholar
  29. 29.
    Serre C, Bourrelly S, Vimont A, Ramsahye NA, Maurin G, Llewellyn PL, Daturi M, Filinchuk Y, Leynaud O, Barnes P, Férey G. Adv Mater, 2007, 17: 2246–2251CrossRefGoogle Scholar
  30. 30.
    Peyser P, Bascom WD. J Appl Polym Sci, 1977, 21: 2359–2373CrossRefGoogle Scholar
  31. 31.
    Chandran MS, Krishna M, Rai S, Krupashankara MS, Salini K. ISRN Polym Sci, 2012: 1–8Google Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA. Gaussian 03, Revision C. 02. Wallingford, CT: Gaussian Inc., 2010Google Scholar
  33. 33.
    Lazar P, Karlický F, Jurecka P, Kocman M, Otyepková E, Šafárová K, Otyepka M. J Am Chem Soc, 2013, 16: 6372–6377CrossRefGoogle Scholar
  34. 34.
    Kolokolov DI, Jobic H, Rives S, Yot PG, Ollivier J, Trens P, Stepanov AG, Maurin G. J Phys Chem C, 2015, 15: 8217–8225CrossRefGoogle Scholar
  35. 35.
    Bourrelly S, Moulin B, Rivera A, Maurin G, Devautour-Vinot S, Serre C, Devic T, Horcajada P, Vimont A, Clet G. J Am Chem Soc, 2010, 27: 9488–9498CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Applied Micro-Nano Materials, School of ScienceBeijing Jiaotong UniversityBeijingChina
  2. 2.Science Education DepartmentBeijing Institute of Graphic CommunicationBeijingChina

Personalised recommendations