Science China Chemistry

, Volume 59, Issue 4, pp 466–471 | Cite as

Effects of spin-coating speed on the morphology and photovoltaic performance of the diketopyrrolopyrrole-based terpolymer

  • Fen Wu
  • Rongyan Hou
  • Liang Yang
  • Bin Zhao
  • Songting Tan


Polymer solar cells (PSCs) were fabricated by combining a diketopyrrolopyrrole-based terpolymer (PTBT-HTID-DPP) as the electron donor, and [6,6]-phenyl C61 butyric acid methyl ester (PC61BM) as the electron acceptor, and the power conversion efficiency (PCE) of 4.31% has been achieved under AM 1.5 G (100 mW cm-2) illumination condition via optimizing the polymer/PC61BM ratio, the variety of solvent and the spin-coating speed. The impact of the spin-coating speed on the photovoltaic performance of the PSCs has been investigated by revealing the effects of the spin-coating speed on the morphology and the absorption spectra of the polymer/PC61BM blend films. When the thickness of the blend films are adjusted by spin-coating a fixed concentration with different spin-coating speeds, the blend film prepared at a lower spin-coating speed shows a stronger absorption per unit thickness, and the correspond device shows higher IPCE value in the longer-wavelength region. Under the conditions of similar thickness, the blend film prepared at a lower spin-coating speed forms a more uniform microphase separation and smaller domain size which leads to a higher absorption intensity per unit thickness of the blend film in long wavenumber band, a larger short-circuit current density (Jsc) and a higher power conversion efficiency (PCE) of the PSC device. Noteworthily, it was found that spin-coating speed is not only a way to control the thickness of active layer but also an influencing factor on morphology and photovoltaic performance for the diketopyrrolopyrrole-based terpolymer.


polymer solar cells device optimization spin-coating speed morphology absorption per unit thickness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2015_5534_MOESM1_ESM.doc (526 kb)
Supplementary material, approximately 526 KB.


  1. 1.
    Liu YH, Zhao JB, Li ZK, Mu C, Ma W, Hu HW, Jiang K, Lin HR, Ade H, Yan H. Nat Commun, 2014, 5: 5293CrossRefGoogle Scholar
  2. 2.
    Guo X, Zhang MJ, Ma W, Ye L, Zhang SQ, Liu SJ, Ade Harald, Huang F, Hou JH. Adv Mater, 2014, 26: 4043–4049CrossRefGoogle Scholar
  3. 3.
    Zhang SQ, Ye L, Zhao WC, Yang B, Wang Q, Hou JH. Sci China Chem, 2015, 58: 248–256CrossRefGoogle Scholar
  4. 4.
    Zhang ZG, Li YF. Sci China Chem, 2015, 58: 192–209CrossRefGoogle Scholar
  5. 5.
    Jiang ZL, Yang D, Wang N, Zhang FJ, Zhao B, Tan ST, Zhang J. Sci China Chem, 2013, 56: 1573–1577CrossRefGoogle Scholar
  6. 6.
    He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Nat Photon, 2012, 6: 593–597CrossRefGoogle Scholar
  7. 7.
    Yang D, Zhou LY, Chen LC, Zhao B, Zhang J and Li C. Chem Commun, 2012, 48: 8078–8080CrossRefGoogle Scholar
  8. 8.
    Zhang ZG, Qi BY, Jin ZW, Chi D, Qi Z, Li YF, Wang JZ. Energy Environ Sci, 2014, 7: 1966–1973CrossRefGoogle Scholar
  9. 9.
    Tan ZA, Li SS, Wang FZ, Lin J, Hou JH, Li YF. Sci Rep, 2014, 4: 4691Google Scholar
  10. 10.
    Tan ZA, Li LJ, Wang FZ, Xu Q, Li SS, Sun G, Tu XH, Hou XL, Hou JH, Li YF. Adv Energy Mater, 2014, 4: 1–7Google Scholar
  11. 11.
    Li N, Zhang WQ, Zhu N, Liu LL, Xie ZQ, Wu HB, Frank W, Ma YG. J Am Chem Soc, 2015, 137: 6995–6998CrossRefGoogle Scholar
  12. 12.
    Guo X, Zhang MJ, Tan JH, Zhang SQ, Huo LJ, Hu WP, Li YF, and Hou JH. Adv Mater, 2012, 24: 6536–6541CrossRefGoogle Scholar
  13. 13.
    Chirvase D, Parisi J, Hummelen JC, Dyakonov V. Nanotechnology, 2004, 15: 1317–1323CrossRefGoogle Scholar
  14. 14.
    Chen LM, Hong ZR, Li G, Yang Y. Adv Mater, 2009, 21: 1434–1449CrossRefGoogle Scholar
  15. 15.
    Ma WL, Yang CY, Gong X, Lee K, Heeger AJ. Adv Funct Mater, 2005, 15: 1617–1622CrossRefGoogle Scholar
  16. 16.
    Yang XN, Loos J, Veenstra SC, Verhees JH, Wienk M, Kroon JM, Michels AJ, Janssen AJ. Nano Lett, 2005, 5: 579–583CrossRefGoogle Scholar
  17. 17.
    Li G, Yao Y, Yang HC, Shrotriya V, Yang GW, Yang Y. Adv Funct Mater, 2007, 17: 1636–164416CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Xie ZY, Qu Y, Geng YH, Wang LX. Appl Phys Lett, 2007, 90: 043504CrossRefGoogle Scholar
  19. 19.
    Gao L, Zhang J, He C, Zhang Y, Sun QJ, Li YF. Sci China Chem, 2014, 57: 966–972CrossRefGoogle Scholar
  20. 20.
    Wienk MM, Turbiez M, Gilot J, Janssen AJ. Adv Mater, 2008, 20: 2556–2560CrossRefGoogle Scholar
  21. 21.
    Ye L, Zhang SQ, Ma W, Fan BH, Guo X, Huang Y, Ade H, Hou JH. Adv Mater, 2012, 24: 6335–6341CrossRefGoogle Scholar
  22. 22.
    Hou RY, Zhao B, Wu F, Wang G, Shen TP, Guo H, Zhang J, Chen HJ, Tan ST. Org Electron, 2015, 20: 142–149CrossRefGoogle Scholar
  23. 23.
    Liu F, Wang C, Baral JK, Watkins JJ, Briseno AL, Russell TP. J Am Chem Soc, 2013, 135: 19248–19259CrossRefGoogle Scholar
  24. 24.
    Li WW, Hendriks KH, Furlan A, Roelofs WSC, Wienk MM, Janssen AJ. J Am Chem Soc, 2013, 135: 18942–18948CrossRefGoogle Scholar
  25. 25.
    Pettersson LA, Roman LS, Inganas O. J Appl Phys, 1999, 86: 487–496CrossRefGoogle Scholar
  26. 26.
    Vanlaeke P, Vanhoyland G, Aernouts T, Cheyns D, Deibel C, Manca J, Heremans P, Poortmans J. Thin Solid Film, 2006, 511–512: 358–361CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fen Wu
    • 1
  • Rongyan Hou
    • 1
  • Liang Yang
    • 1
  • Bin Zhao
    • 1
    • 2
  • Songting Tan
    • 1
    • 2
  1. 1.Key Laboratory of Environmentally Friendly Chemistry and Applications, Ministry of Education; College of ChemistryXiangtan UniversityXiangtanChina
  2. 2.Key Laboratory of Polymeric Materials & Application Technology of Hunan ProvinceXiangtan UniversityXiangtanChina

Personalised recommendations