Science China Chemistry

, Volume 59, Issue 4, pp 422–435 | Cite as

Interface energetics and engineering of organic heterostructures in organic photovoltaic cells

  • Yan-Qing Li
  • Qian-Kun Wang
  • Qing-Dong Ou
  • Jian-Xin Tang
Reviews

Abstract

The reliable information about interface energetics of organic materials, especially the energy level alignment at organic heterostructures is of pronounced importance for unraveling the photon harvesting and charge separation process in organic photovoltaic (OPV) cells. This article provides an overview of interface energetics at typical planar and mixed donor-acceptor heterostructures, perovskite/organic hybrid interfaces, and their contact interfaces with charge collection layers. The substrate effect on energy level offsets at organic heterostructures and the processes that control and limit the OPV operation are presented. Recent efforts on interface engineering with electrical doping are also discussed.

Keywords

organic photovoltaic cell organic heterostructure energy level alignment substrate effect interface engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tang CW. Appl Phys Lett, 1986; 48: 183–185CrossRefGoogle Scholar
  2. 2.
    Chen JD, Cui C, Li YQ, Zhou L, Ou QD, Li C, Li Y, Tang JX. Adv Mater, 2015; 27: 1035–1041CrossRefGoogle Scholar
  3. 3.
    Ni W, Li MM, Wan XJ, Zuo Y, Kan B, Feng HR, Zhang Q, Chen YS. Sci China Chem, 2015; 58: 339–346CrossRefGoogle Scholar
  4. 4.
    Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ. Adv Mater, 2006; 18: 572–576CrossRefGoogle Scholar
  5. 5.
    Xue J, Rand BP, Uchida S, Forrest SR. Adv Mater, 2005; 17: 66–71CrossRefGoogle Scholar
  6. 6.
    Drechsel J, Männig B, Kozlowski F, Pfeiffer M, Leo K, Hoppe H. Appl Phys Lett, 2005, 86: 244102CrossRefGoogle Scholar
  7. 7.
    Shrotriya V, Wu EHE, Li G, Yao Y, Yang Y. Appl Phys Lett, 2006, 88: 064104CrossRefGoogle Scholar
  8. 8.
    Haeldermans I, Vandewal K, Oosterbaan WD, Gadisa A, D’Haen J, Van Bael MK, Manca JV, Mullens J. Appl Phys Lett, 2008, 93: 223302CrossRefGoogle Scholar
  9. 9.
    Yang X, Liu WQ, Chen HZ. Sci China Chem, 2015; 58: 210–220CrossRefGoogle Scholar
  10. 10.
    Xu ZQ, Yang JP, Sun FZ, Lee ST, Li YQ, Tang JX. Org Electron, 2012; 13: 697–704CrossRefGoogle Scholar
  11. 11.
    Peumans P, Forrest SR. Appl Phys Lett, 2001; 79: 126–128CrossRefGoogle Scholar
  12. 12.
    Liao SH, Jhuo HJ, Yeh PN, Cheng YS, Li YL, Lee YH, Sharma S, Chen SA. Sci Rep, 2014, 4: 6813CrossRefGoogle Scholar
  13. 13.
    Liu YH, Zhao JB, Li ZK, Mu C, Ma W, Hu HW, Jiang K, Lin HR, Ade H, Yan H. Nat Commun, 2014, 5: 5293CrossRefGoogle Scholar
  14. 14.
    Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015; 58: 248–256CrossRefGoogle Scholar
  15. 15.
    He ZC, Xiao B, Liu F, Wu HB, Yang YL, Xiao S, Wang C, Russell TP, Cao Y. Nat Photon, 2015; 9: 174–179CrossRefGoogle Scholar
  16. 16.
    Braun S, Salaneck WR, Fahlman M. Adv Mater, 2009, 21: 1450–1472CrossRefGoogle Scholar
  17. 17.
    Greiner MT, Helander MG, Tang WM, Wang ZB, Qiu J, Lu ZH. Nat Mater, 2012; 11: 76–81CrossRefGoogle Scholar
  18. 18.
    Ou QD, Li C, Li YQ, Tang JX. J Electron Spectrosc Relat Phenom, 2015; 204: 186–195CrossRefGoogle Scholar
  19. 19.
    Gadisa A, Svensson M, Andersson MR, Inganäs O. Appl Phys Lett, 2004; 84: 1609–1611CrossRefGoogle Scholar
  20. 20.
    Mutolo KL, Mayo EI, Rand BP, Forrest SR, Thompson ME. J Am Chem Soc, 2006; 128: 8108–8109CrossRefGoogle Scholar
  21. 21.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ. Adv Mater, 2006; 18: 789–794CrossRefGoogle Scholar
  22. 22.
    Rand BP, Burk DP, Forrest SR. Phys Rev B, 2007, 75: 115327CrossRefGoogle Scholar
  23. 23.
    Tang JX, Lau KM, Lee CS, Lee ST. Appl Phys Lett, 2006, 88: 232103CrossRefGoogle Scholar
  24. 24.
    Tang JX, Lee CS, Lee ST. J Appl Phys, 2007, 101: 064504CrossRefGoogle Scholar
  25. 25.
    Zhou YC, Liu ZT, Tang JX, Lee CS, Lee ST. J Electron Spectrosc Relat Phenom, 2009; 174: 35–39CrossRefGoogle Scholar
  26. 26.
    Braun S, De Jong MP, Osikowicz W, Salaneck WR. Appl Phys Lett, 2007, 91: 202103–202108CrossRefGoogle Scholar
  27. 27.
    Yang F, Shtein M, Forrest SR. Nat Mater, 2005; 4: 37–41CrossRefGoogle Scholar
  28. 28.
    Liao L, Klubek K, Tang C. Appl Phys Lett, 2004; 84: 167–169CrossRefGoogle Scholar
  29. 29.
    Wei HX, Ou QD, Zhang Z, Li J, Li YQ, Lee ST, Tang JX. Org Electron, 2013; 14: 839–844CrossRefGoogle Scholar
  30. 30.
    Meyer J, Hamwi S, Kroger M, Kowalsky W, Riedl T, Kahn A. Adv Mater, 2012; 24: 5408–5427CrossRefGoogle Scholar
  31. 31.
    Lüssem B, Riede M, Leo K. Physica Status Solidi A, 2013; 210: 9–43CrossRefGoogle Scholar
  32. 32.
    Salzmann I, Heimel G, Duhm S, Oehzelt M, Pingel P, George BM, Schnegg A, Lips K, Blum RP, Vollmer A, Koch N. Phys Rev Lett, 2012, 108: 035502CrossRefGoogle Scholar
  33. 33.
    Mendez H, Heimel G, Opitz A, Sauer K, Barkowski P, Oehzelt M, Soeda J, Okamoto T, Takeya J, Arlin JB, Balandier JY, Geerts Y, Koch N, Salzmann I. Angew Chem Int Ed, 2013; 52: 7751–7755CrossRefGoogle Scholar
  34. 34.
    Hsiao YC, Wu T, Zang HD, Li MX, Hu B. Sci China Chem, 2015; 58: 239–247CrossRefGoogle Scholar
  35. 35.
    Ishii H, Sugiyama K, Ito E, Seki K. Adv Mater, 1999; 11: 605–625CrossRefGoogle Scholar
  36. 36.
    Oehzelt M, Koch N, Heimel G. Nat Commun, 2014, 5: 4174CrossRefGoogle Scholar
  37. 37.
    Gao W, Kahn A. Appl Phys Lett, 2003; 82: 4815–4817CrossRefGoogle Scholar
  38. 38.
    Zhou Y, Li C, Xie HJ, Li YQ, Duhm S, Tang JX. Adv Mater Interf, 2015, 2: 1500095Google Scholar
  39. 39.
    Ratcliff EL, Meyer J, Steirer KX, Armstrong NR, Olson D, Kahn A. Org Electron, 2012; 13: 744–749CrossRefGoogle Scholar
  40. 40.
    Nakanishi R, Nogimura A, Eguchi R, Kanai K. Org Electron, 2014; 15: 2912–2921CrossRefGoogle Scholar
  41. 41.
    Bao Q, Sandberg O, Dagnelund D, Sanden S, Braun S, Aarnio H, Liu X, Chen WM, Österbacka R, Fahlman M. Adv Funct Mater, 2014; 24: 6309–6316CrossRefGoogle Scholar
  42. 42.
    Xu Z, Chen LM, Chen MH, Li G, Yang Y. Appl Phys Lett, 2009, 95: 013301–013303CrossRefGoogle Scholar
  43. 43.
    Wei HX, Li J, Cai Y, Xu ZQ, Lee ST, Li YQ, Tang JX. Org Electron, 2011; 12: 1422–1428CrossRefGoogle Scholar
  44. 44 a).
    Ng TW, Lo MF, Fung MK, Lai SL, Liu ZT, Lee CS, Lee ST. Appl Phys Lett, 2009, 95: 203303CrossRefGoogle Scholar
  45. b).
    Park SH, Jeong JG, Kim HJ, Park SH, Cho MH, Cho SW, Yi YJ, Heo MY, Sohn H. Appl Phys Lett, 2010, 96: 013302CrossRefGoogle Scholar
  46. 45.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012; 338: 643–647CrossRefGoogle Scholar
  47. 46.
    Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013; 499: 316–319CrossRefGoogle Scholar
  48. 47.
    Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014; 345: 542–546CrossRefGoogle Scholar
  49. 48.
    Xiao JY, Shi JJ, Li DM, Meng QB. Sci China Chem, 2015; 58: 221–238CrossRefGoogle Scholar
  50. 49.
    Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A. Energy Environ Sci, 2014; 7: 1377–1381CrossRefGoogle Scholar
  51. 50.
    Wang QK, Wang RB, Shen PF, Li C, Li YQ, Liu LJ, Duhm S, Tang JX. Advd Mater Interf, 2015, 2: 1400528Google Scholar
  52. 51.
    Xu Z, Chen LM, Yang G, Huang CH, Hou J, Wu Y, Li G, Hsu CS, Yang Y. Adv Funct Mater, 2009; 19: 1227–1234CrossRefGoogle Scholar
  53. 52.
    Jia T, Zhou WL, Li FH, Gao YJ, Wang L, Han JX, Zhang JY, Wang Y. Sci China Chem, 2015; 58: 323–330CrossRefGoogle Scholar
  54. 53.
    Tang J, Li Y, Zheng L, Hung L. J Appl Phys, 2004; 95: 4397–4403CrossRefGoogle Scholar
  55. 54.
    Werner A, Li F, Harada K, Pfeiffer M, Fritz T, Leo K, Machill S. Adv Funct Mater, 2004; 14: 255–260CrossRefGoogle Scholar
  56. 55.
    Yang QQ, Wang JT, Zhang XQ, Zhang J, Fu YY, Xie ZY. Sci China Chem, 2015; 58: 309–316CrossRefGoogle Scholar
  57. 56.
    Nian L, Zhou JD, Zeng K, Wu XY, Liu LL, Xie ZQ, Huang F, Ma YG. Sci China Chem, 2015; 58: 317–322CrossRefGoogle Scholar
  58. 57.
    Motiei L, Yao Y, Choudhury J, Yan H, Marks TJ, Van Der Boom ME, Facchetti A. J Am Chem Soc, 2010, 132: 12528–12530CrossRefGoogle Scholar
  59. 58.
    Xu ZQ, Sun FZ, Li J, Lee ST, Li YQ, Tang JX. Appl Phys Lett, 2011, 99: 203301CrossRefGoogle Scholar
  60. 59.
    Tan ZA, Zhang WQ, Zhang ZG, Qian DP, Huang Y, Hou JH, Li YF. Adv Mater, 2013; 24: 1476–1481CrossRefGoogle Scholar
  61. 60.
    Wang FX, Xiong T, Qiao XF, Ma DG. Org Electron, 2009; 10: 266–274CrossRefGoogle Scholar
  62. 61.
    Yang JP, Xiao Y, Deng YH, Duhm S, Ueno N, Lee ST, Li YQ, Tang JX. Adv Funct Mater, 2012; 22: 600–608CrossRefGoogle Scholar
  63. 62.
    Cai Y, Wei X, Li J, Bao QY, Zhao X, Lee ST, Li YQ, Tang JX. Appl Phys Lett, 2011, 98:113304CrossRefGoogle Scholar
  64. 63.
    Zhao J, Cai Y, Yang JP, Wei HX, Deng YH, Li YQ, Lee ST, Tang JX. Appl Phys Lett, 2012, 101:193303CrossRefGoogle Scholar
  65. 64.
    Shi AL, Li YQ, Xu ZQ, Sun FZ, Li J, Shi XB, Wei HX, Lee ST, Kera S, Ueno N, Tang JX. Org Electron, 2013; 14: 1844–1851CrossRefGoogle Scholar
  66. 65.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ. Science, 2007; 317: 222–225CrossRefGoogle Scholar
  67. 66.
    Dou LT, You JB, Yang J, Chen CC, He YJ, Murase S, Moriarty T, Emery K, Li G, Yang Y. Nat Photon, 2012; 6: 180–185CrossRefGoogle Scholar
  68. 67.
    Ameri T, Li N, Brabec CJ. Energy Environ Sci, 2013; 6: 2390–2413CrossRefGoogle Scholar
  69. 68.
    Timmreck R, Olthof S, Leo K, Riede MK. J Appl Phys, 2010, 108: 033108CrossRefGoogle Scholar
  70. 69.
    Sista S, Park MH, Hong Z, Wu Y, Hou J, Kwan WL, Li G, Yang Y. Adv Mater, 2010; 22: 380–383CrossRefGoogle Scholar
  71. 70.
    Hadipour A, De Boer B, Blom PWM. Adv Funct Mater, 2008; 18: 169–181CrossRefGoogle Scholar
  72. 71.
    Sun XW, Zhao DW, Ke L, Kyaw AKK, Lo GQ, Kwong DL. Appl Phys Lett, 2010, 97: 053303CrossRefGoogle Scholar
  73. 72.
    Gilot J, Wienk MM, Janssen RA. Adv Mater, 2010, 22: E67–E71CrossRefGoogle Scholar
  74. 73.
    Janssen AGF, Riedl T, Hamwi S, Johannes HH, Kowalsky W. Appl Phys Lett, 2007, 91: 073519CrossRefGoogle Scholar
  75. 74.
    Li J, Bao QY, Wei HX, Xu ZQ, Yang JP, Li YQ, Lee ST, Tang JX. J Mater Chem, 2012; 22: 6285–6290CrossRefGoogle Scholar
  76. 75.
    Wang RB, Wang QK, Xie HJ, Xu LH, Duhm S, Li YQ, Tang JX. ACS Appl Mater Interf, 2014, 6: 15604–15609Google Scholar
  77. 76.
    Wang JC, Ren XC, Shi SQ, Leung CW, Chan PKL. Org Electron, 2011, 12L: 880–885CrossRefGoogle Scholar
  78. 77.
    Sims L, Hörmann U, Hanfland R, MacKenzie RC, Kogler FR, Steim R, Brütting W, Schilinsky P. Org Electron, 2014; 15: 2862–2867CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yan-Qing Li
    • 1
  • Qian-Kun Wang
    • 1
  • Qing-Dong Ou
    • 1
  • Jian-Xin Tang
    • 1
  1. 1.Institute of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials & DevicesSoochow UniversitySuzhouChina

Personalised recommendations