Science China Chemistry

, Volume 59, Issue 8, pp 1018–1024 | Cite as

Solution-processable graphenes by covalent functionalization of graphene oxide with polymeric monoamines

  • Jing Wang
  • Ke Feng
  • Nan Xie
  • Zhi-Jun Li
  • Qing-Yuan Meng
  • Bin Chen
  • Chen-Ho Tung
  • Li-Zhu Wu


We develop here a simple wet chemistry to prepare covalent functionalized graphenes (FGs) through epoxide aminolysis especially under alkaline aqueous condition. Remarkably, a series of typical monoamines, such as industrial Huntsman Jeffamine® M-2070 and M-2005 polymer with hydrophilic or hydrophobic polyetheramine chains, positively-charged 2-amino-N,N,Ntrimethylpropanaminium, negatively-charged sulfanilic acid, even oligopeptide sequence, can be effectively grafted on the platelets of graphene oxide precursor with covalent functionalization and partially reduced features. This strategy provides the researchers a facile and convenient approach to design and synthesize solution processable, biocompatible and functionalized graphenes for the potent applications in electronic inks, drug carriers and biomedicines. Expansion of the current study is actively ongoing in our laboratory.


epoxide aminolysis polymeric monoamines hydrophilic and hydrophobic graphenes solution-processable 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2015_5523_MOESM1_ESM.doc (6.9 mb)
Supplementary material, approximately 6.9 MB.


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, ZhangY, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669CrossRefGoogle Scholar
  2. 2.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Nat Photon, 2010, 4: 611–622CrossRefGoogle Scholar
  3. 3.
    Dai L. Acc Chem Res, 2013, 46: 31–42CrossRefGoogle Scholar
  4. 4.
    Haddon RC. Acc Chem Res, 2013, 46: 1–3CrossRefGoogle Scholar
  5. 5.
    Sun Z, James DK, Tour JM. J Phys Chem Lett, 2011, 2: 2425–2432CrossRefGoogle Scholar
  6. 6.
    Wassei JK, Kaner RB. Acc Chem Res, 2013, 46: 2244–2253CrossRefGoogle Scholar
  7. 7.
    Huang X, Zeng Z, Fan Z, Liu J, Zhang H. Adv Mater, 2012, 24: 5979–6004CrossRefGoogle Scholar
  8. 8.
    Li C, Shi G. Adv Mater, 2014, 26: 3993–4012Google Scholar
  9. 9.
    Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong JR. Adv Mater, 2013, 25: 3820–3839CrossRefGoogle Scholar
  10. 10.
    Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Angew Chem Int Ed, 2009, 48: 7752–7777CrossRefGoogle Scholar
  11. 11.
    Hirsch A, Englert JM, Hauke F. Acc Chem Res, 2013, 46: 87–96CrossRefGoogle Scholar
  12. 12.
    Kelly KF, Billups WE. Acc Chem Res, 2013, 46: 4–13CrossRefGoogle Scholar
  13. 13.
    Quintana M, Vazquez E, Prato M. Acc Chem Res, 2013, 46: 138–148CrossRefGoogle Scholar
  14. 14.
    Salavagione HJ. J Mater Chem A, 2014, 2: 7138–7146CrossRefGoogle Scholar
  15. 15.
    Chen D, Feng H, Li J. Chem Rev, 2012, 112: 6027–6053CrossRefGoogle Scholar
  16. 16.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS. Chem Soc Rev, 2010, 39: 228–240CrossRefGoogle Scholar
  17. 17.
    Chua CK, Pumera M. Chem Soc Rev, 2014, 43: 291–312CrossRefGoogle Scholar
  18. 18.
    Clayden J, Greeves N, Warren S, et al. Organic Chemistry. Place Published: Oxford University Press, 2001Google Scholar
  19. 19.
    Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I. Langmuir, 2003, 19: 6050–6055CrossRefGoogle Scholar
  20. 20.
    Shan CS, Yang HF, Han DX, Zhang QX, Ivaska A, Niu L. Langmuir, 2009, 25: 12030–12033CrossRefGoogle Scholar
  21. 21.
    Yang HF, Shan CS, Li FH, Han DX, Zhang QX, Niu L. Chem Commun, 2009: 3880–3882Google Scholar
  22. 22.
    Yang HF, Li FH, Shan CS, Han DX, Zhang QX, Niu L, Ivaska A. J Mater Chem 2009, 19: 4632–4638CrossRefGoogle Scholar
  23. 23.
    Zeng C, Tang Z, Guo B, Zhang L. Phys Chem Chem Phys, 2012, 14: 9838–9845CrossRefGoogle Scholar
  24. 24.
    Compton OC, Dikin DA, Putz KW, Brinson LC, Nguyen ST. Adv Mater, 2010, 22: 892–896CrossRefGoogle Scholar
  25. 25.
    Zhang HH, Liu Q, Feng K, Chen B, Tung CH, Wu LZ. Langmuir, 2012, 28: 8224–8229CrossRefGoogle Scholar
  26. 26.
    Wang J, Feng K, Zhang HH, Chen B, Li ZJ, Meng QY, Zhang LP, Tung CH, Wu LZ. Beilstein J Nanotechnol, 2014, 5: 1167–1174CrossRefGoogle Scholar
  27. 27.
    Pradhan N, Xu H, Peng X. Nano Lett, 2006, 6: 720–724CrossRefGoogle Scholar
  28. 28.
    Xu B, Zhang Z, Wang X. Nanoscale, 2013, 5: 4495–4505CrossRefGoogle Scholar
  29. 29.
    Si Y, Samulski ET. Nano Lett, 2008, 8: 1679–1682CrossRefGoogle Scholar
  30. 30.
    Zhang HH, Feng K, Chen B, Meng QY, Li ZJ, Tung CH, Wu LZ. Catal Sci Technol, 2013, 3: 1815–1821CrossRefGoogle Scholar
  31. 31.
    Gao W, Alemany LB, Ci L, Ajayan PM. Nat Chem, 2009, 1: 403–408CrossRefGoogle Scholar
  32. 32.
    Ganguly A, Sharma S, Papakonstantinou P, Hamilton J. J Phys Chem C, 2011, 115: 17009–17019CrossRefGoogle Scholar
  33. 33.
    Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R. Nano Lett, 2007, 8: 36–41CrossRefGoogle Scholar
  34. 34.
    Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Phys Rev Lett, 2006, 97: 187401CrossRefGoogle Scholar
  35. 35.
    Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH. Prog Mater Sci, 2012, 57: 1061–1105CrossRefGoogle Scholar
  36. 36.
    Huang P, Zhu H, Jing L, Zhao Y, Gao X. ACS Nano, 2011, 5: 7945–7949CrossRefGoogle Scholar
  37. 37.
    Secor EB, Lim S, Zhang H, Frisbie CD, Francis LF, Hersam MC. Adv Mater, 2014, 26: 4533–4538CrossRefGoogle Scholar
  38. 38.
    Secor EB, Prabhumirashi PL, Puntambekar K, Geier ML, Hersam MC. J Phys Chem Lett, 2013, 4: 1347–1351CrossRefGoogle Scholar
  39. 39.
    Li Y, Feng L, Shi X, Wang X, Yang Y, Yang K, Liu T, Yang G, Liu Z. Small, 2014, 10: 1544–1554CrossRefGoogle Scholar
  40. 40.
    Yang K, Feng L, Shi X, Liu Z. Chem Soc Rev, 2013, 42: 530–547CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.School of Chemical Biology and Pharmaceutical SciencesCapital Medical UniversityBeijingChina

Personalised recommendations