Science China Chemistry

, Volume 59, Issue 4, pp 497–504 | Cite as

Modeling for tungstic precipitation and extraction based on Pitzer equation

  • Xinyue Zhang
  • Pengge Ning
  • Weifeng Xu
  • Hongbin Cao
  • Yi Zhang


This work presented the results of tungstic precipitation from Na2WO4-Na2SO4-H2O system at 293.15 K, with which the Pitzer parameters of \(\beta _{N{a_2}W{O_4}}^{\left( 0 \right)}\) and \(\beta _{N{a_2}W{O_4}}^{\left( 1 \right)}\) were determined from Pitzer equation by regression. Thus the mean ionic activity coefficients of sodium tungstate were calculated. The obtained \(\beta _{N{a_2}W{O_4}}^{\left( 0 \right)}\) and \(\beta _{N{a_2}W{O_4}}^{\left( 1 \right)}\) were substituted as fixed values in extraction modeling from Na2WO4-H2SO4-H2O system by primary amine (N1923) in toluene as diluent. Meanwhile the activity coefficient expressions in organic phase were varied based on Pitzer theory that the interaction term for the solvent should not be included. The Pitzer parameters for organic phase were re-regressed in order to make the model more accurate. The average absolute relative deviation (AARD) for calculated and experimental molality of WO42− in aqueous phase was 5.24%. The results showed that the model can not only correlate but also predict the liquid-liquid equilibrium (LLE) data.


tungstic precipitation Pitzer parameter activity coefficient extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiberg E, Wiberg N, Holleman AF. Inorganic Chemistry. San Diego: Academic Press, 2001. 1386Google Scholar
  2. 2.
    Lassner E. Int J Refract Met Hard Mater, 1995, 13: 35–44CrossRefGoogle Scholar
  3. 3.
    Pandey BD, Kumar V, Bagchi D, Jana RK. Miner Process Extr Metall Rev, 2001, 22: 101–120CrossRefGoogle Scholar
  4. 4.
    Zeng L, Cheng CY. Hydrometallurgy, 2009, 98: 1–9CrossRefGoogle Scholar
  5. 5.
    Thi HN, Man SL. Ind Eng Chem Res, 2014, 53: 8608–8614CrossRefGoogle Scholar
  6. 6.
    Yu KN. Dissertation for the Master Degree. Beijing: University of Chinese Academy of Sciences, 1982Google Scholar
  7. 7.
    Yu SQ, Chen JY. Acta Metall Sin, 1984, 20: B332–B341Google Scholar
  8. 8.
    Xu WF, Ning PG, Cao HB, Zhang Y. Hydrometallurgy, 2014, 147-148: 170–177CrossRefGoogle Scholar
  9. 9.
    Pitzer KS. J Phys Chem, 1973, 77: 268–277CrossRefGoogle Scholar
  10. 10.
    Pitzer KS, Mayorga G. J Phys Chem, 1973, 77: 2300–2308CrossRefGoogle Scholar
  11. 11.
    Pitzer KS. Ion interaction approach: theory and data correlation. In: Pitzer KS, Ed. Activity Coefficients in Electrolyte Solutions. 2nd Ed. Boca Raton: CRC Press, 1991Google Scholar
  12. 12.
    Pitzer KS, Silvester LF. J Solu Chem, 1976, 5: 269–278CrossRefGoogle Scholar
  13. 13.
    Schunk A, Maurer G. Fluid Phase Equilib, 2003, 207: 1–21CrossRefGoogle Scholar
  14. 14.
    Li YG, Lu JF. Electrolyte Solution Theory. Beijing: Tsinghua University Press, 2005Google Scholar
  15. 15.
    Wu DQ, Qu SS, Xu ZL. J Chem Thermodyn, 1990, 22: 35–39CrossRefGoogle Scholar
  16. 16.
    Rard JA. J Chem Thermodyn,1993, 25: 887–904CrossRefGoogle Scholar
  17. 17.
    Kim HT, Frederick WJ. J Chem Eng Data, 1988, 33: 177–184CrossRefGoogle Scholar
  18. 18.
    Goldberg RN. J Phys Chem Ref Data, 1981, 10: 671–764CrossRefGoogle Scholar
  19. 19.
    Maliacy P, Hubert N, Schuffenecker L, Solimando R. Fluid Phase Equilib, 1998, 148: 95–106CrossRefGoogle Scholar
  20. 20.
    Chen CC, Britt HI, Boston JF, Evans LB. AIChE J, 1982, 28: 588–596CrossRefGoogle Scholar
  21. 21.
    Chen CC. Fluid Phase Equilib, 1986, 27: 457–474CrossRefGoogle Scholar
  22. 22.
    Li YG. Thermodynamics of Solvent Extraction of Metals. Beijing: Tsinghua University Press,1988Google Scholar
  23. 23.
    Ning PG, Cao HB, Zhang Y. Sep Purif Technol, 2009, 70: 27–33CrossRefGoogle Scholar
  24. 24.
    Baes CF, Mesmer RE. The Hydrolysis of Cations. New York: John Wiley & Sons, 1976Google Scholar
  25. 25.
    Neková P, Schrotterová D. Chem Eng J, 2000, 79: 229–233CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xinyue Zhang
    • 1
    • 2
    • 3
  • Pengge Ning
    • 2
  • Weifeng Xu
    • 2
  • Hongbin Cao
    • 2
  • Yi Zhang
    • 1
    • 2
    • 3
  1. 1.School of Chemical Engineering and Technology, National Engineering Research Center of Distillation TechnologyTianjin UniversityTianjinChina
  2. 2.Research Centre for Process Pollution Control, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations